Posts

cellulose-derived spherical activated carbon

Cellulose-Derived Spherical Activated Carbon

Cellulose-derived spherical activated carbon offers a sustainable and efficient solution for adsorbing harmful compounds such as uremic toxins [1]. This carbon material is made from renewable cellulose, which is transformed into spherical particles and then activated to increase surface area and porosity. The spherical shape improves flow properties and reduces dust, making it ideal for pharmaceutical and biomedical applications. Moreover, it combines eco-friendly production with strong adsorption performance, providing a safer and more manageable alternative to traditional powdered carbon.

Uremic toxins are metabolic waste compounds that accumulate in the body when kidney function declines. These toxins interfere with biological processes and contribute to various health issues. Drugs and adsorbent therapies aim to remove them effectively, but such interventions must be selective to avoid removing essential molecules. Therefore, understanding both the functionality and potential toxicity of uremic toxins is crucial for designing safe and effective treatments. While adsorption therapies can improve toxin clearance, they also carry risks such as unintended drug adsorption or gut irritation, which must be minimized through precise material engineering.

Summary of the Publication

Shin et al. (2025) present a study on sustainable cellulose-derived spherical activated carbon designed for efficient uremic toxin removal. The research focuses on transforming cellulose into spherical carbon precursors and activating them to achieve high porosity and surface area. The resulting material combines uniform shape, hierarchical pore structure, and strong mechanical integrity. These properties make it ideal for biomedical use, particularly for toxin adsorption under gastrointestinal conditions. The authors report that the spheres maintain their shape across different pH levels and perform well even in dynamic or competitive adsorption environments.

Furthermore, the adsorption kinetics show that these spherical carbons quickly capture uremic toxin molecules such as indole derivatives. The authors compare the material with conventional activated carbon powders and find significant improvements in handling and biocompatibility. Importantly, the spheres demonstrate low cytotoxicity, which supports their suitability for oral or extracorporeal use. Because of their uniform size and reduced dusting, they minimize irritation risks and can be easily integrated into medical formulations or devices. In addition, the study discusses the environmental and economic benefits of using cellulose feedstocks, showing that this process supports circular material use and low-cost production.

A key part of the research involves CELLETS® 100 and CELLETS® 500. These cellulose microspheres act as templates during synthesis. CELLETS® 100, having a smaller diameter, produces finer activated carbon spheres, while CELLETS® 500 leads to larger ones. This variation allows the authors to tune pore structure, surface area, and mechanical properties. Consequently, CELLETS® 100-derived carbons show faster adsorption kinetics, whereas CELLETS® 500-derived carbons offer better durability. The study highlights that choosing the right CELLETS® grade directly influences the final adsorption performance and application potential of the spherical carbon.

Conclusion and Outlook

The development of cellulose-derived spherical activated carbon marks a major step toward safer and more sustainable toxin removal technologies. By merging green chemistry with advanced nanoengineering, these materials achieve both environmental and therapeutic goals. Their customizable size, stability, and porosity enable versatile use in pharmaceutical formulations and medical devices. Looking ahead, researchers must explore long-term biocompatibility, selective adsorption behavior, and performance in complex biological fluids. Moreover, scaling up production under pharmaceutical standards will determine clinical viability. With further optimization, cellulose-derived spherical activated carbon could revolutionize uremic toxin management and open new paths for eco-friendly therapeutic materials.

References

[1] Kyungmin Shin, Su-Bin Kim, Yong-Han Kim, Dae-Duk Kim, Seul-Yi Lee, Soo-Jin Park, Materials & Design,a available online 10 October 2025, 114892. doi:10.1016/j.matdes.2025.114892

Homogeneity and mechanical properties of orodispersible films loaded with pellets

Orodispersible films loaded with pellets provide a convenient and patient-friendly approach for drug administration. They dissolve quickly in the mouth, eliminating the need for water and making them ideal for children, elderly patients, and people with swallowing difficulties. Furthermore, combining films with pellets adds the benefits of controlled release and dose flexibility.

Challenges in Formulating Orodispersible Films Loaded with Pellets

Formulating orodispersible films loaded with pellets remains challenging. Large pellets at high concentrations often reduce film homogeneity and weaken mechanical strength. As a result, maintaining tear resistance while ensuring rapid disintegration is essential. Therefore, optimizing the balance between pellet content and film properties is critical for successful formulations.

Study Objective and Method

This study aimed to create fast-disintegrating ODFs with uniformly distributed pellets without compromising mechanical integrity. We used hypromellose films incorporating placebo pellets of 100 µm and 200 µm in concentrations from 20% to 45% w/w. A planetary mixer (Thinky) effectively prepared a uniform suspension before solvent casting. Consequently, the films achieved a consistent pellet distribution and smooth texture.

Effects of Pellet Size and Concentration

Pellet size and concentration significantly influenced film properties. Notably, only 100 µm pellets above 40% reduced tear resistance. In contrast, the presence of pellets accelerated disintegration. Moreover, larger particles shortened disintegration time by up to 60%. Thus, selecting the right pellet size and concentration can improve film performance without sacrificing strength.

Homogeneity and Film Quality

Achieving uniform pellet distribution is crucial for dosing accuracy and overall quality. Films cast at 500 µm and 800 µm gap heights showed excellent homogeneity, with an even number of particles per unit area. Therefore, proper casting and mixing strategies ensure consistent orodispersible films loaded with pellets that meet pharmaceutical standards.

Conclusion

Orodispersible films loaded with pellets combine rapid disintegration, mechanical strength, and dose flexibility. By carefully controlling pellet size, concentration, and casting parameters, manufacturers can produce reliable, patient-friendly ODFs. Ultimately, this approach strengthens ODFs’ potential as a next-generation drug delivery system.

Reference

This article on homogeneity and mechanical properties of orodispersible films loaded with pellets was published on Oct 20 2024 on ScienceDirect.

Document information

Pellet materials

Pellets in two different sizes: CELLETS® 100 and CELLETS® 200, composed of 100% microcrystalline cellulose, were used as model spherical granules.

Authors

Katarzyna Centkowska, Martyna Szadkowska, Marta Basztura, Małgorzata Sznitowska

Source

published on Oct 20 2024 on ScienceDirect under CC BY 4.0 license.

The patent application titled “Modified Release Gamma-Hydroxybutyrate (GHB) Formulations Having Improved Pharmacokinetics” (US20240148685) focuses on improving the delivery of GHB, a substance used for treating sleep disorders like narcolepsy, through modified-release formulations. The goal is to optimize GHB’s absorption, enhancing patient convenience and compliance by reducing the need for multiple nightly doses.

The key innovation in the patent is the use of CELLETS®, microcrystalline spheres often employed as a neutral core for drug layering. In this application, CELLETS® act as carriers for the active ingredient, allowing precise control over the release profile of GHB. These small spherical particles, made from microcrystalline cellulose, offer uniform size and high mechanical strength, ensuring consistent drug loading and a controlled release rate.

In this patent, the CELLETS® are coated with various layers of GHB and release-modifying agents, enabling a predictable and sustained release of the active substance. This modified release profile allows GHB to be administered in a once-nightly dose rather than requiring the patient to wake up for a second dose, which was a limitation with previous immediate-release formulations. This extended-release mechanism helps maintain stable plasma concentrations of GHB over an 8-hour period, improving both the efficacy of the treatment and patient compliance.

The innovation emphasizes addressing the shortcomings of existing GHB formulations by ensuring a better pharmacokinetic profile—particularly regarding absorption, bioavailability, and minimizing drug levels in the bloodstream after the therapeutic effect has been achieved. In this specific patent, the following MCC Sphere types are recommended: CELLETS® 90, CELLETS® 100, CELLETS® 127.

Document information

Document Type and Number: (“Modified release Gamma-Hydroxybutyrate formulations having improved pharmacokinetics”)
Kind Code: A1

Inventors:

Dubow, Jordan (Lyon, FR)
Guillard, Hervé (Villeurbanne, FR)
Mégret, Claire (Lyon, FR)
Dubuisson, Jean-françois (Lyon, FR)

Disclaimer

This text was generated by chatGPT engine version GPT‑4o, on Oct 21, 2024. Image was generated with Adobe Firefly.