This article “Influence of Polymer Film Thickness on Drug Release from Fluidized Bed Coated Pellets and Intended Process and Product Control” was published on Pharmaceutics 2024, 16(10), 1307; https://doi.org/10.3390/pharmaceutics16101307, under free licence on October 08, 2024 by Marcel Langner, Florian Priese, and Bertram Wolf.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation of Sodium Benzoate-Coated Pellets
Content (%) | |
---|---|
Sodium benzoate | 32.6 |
Microcrystalline cellulose | 65.3 |
PVP | 1.6 |
Talcum | 0.5 |
100.0 |
2.3. Formulation of Polyacrylate-Coated Sodium Benzoate Pellets
Lot | P1 | P2 | P3 |
---|---|---|---|
Content (%) | |||
Sodium benzoate | 25.9 | 24.4 | 22.9 |
Microcrystalline cellulose | 55.7 | 52.6 | 49.3 |
PVP | 1.3 | 1.2 | 1.1 |
Polyacrylate | 11.1 | 14.3 | 17.6 |
Talcum | 4.9 | 6.1 | 7.4 |
Magnesium stearate | 1.1 | 1.4 | 1.7 |
100.0 | 100.0 | 100.0 |
2.4. Fluidized Bed Pellet Coating
Parameter | First Step | Second Step |
---|---|---|
Sodium benzoate | Polyacrylate | |
Pellet batch (g) | 300 | |
Process air temperature (°C) | 80 | 40 |
Product temperature (°C) | 40 | 25 |
Process air volume rate (m3/h) | 40–60 | |
Spray rate (g/min) | 20 | 6 |
Spray pressure (bar) | 3 |
2.5. Particle Size Coating Layer Thickness Measurement with SFV Probe
2.6. Sodium Benzoate Release and Content Investigation
2.7. Linearization of Release Curves
The evaluation of the release curves was performed according to the different models of release kinetics also used by a number of authors [1,3,5,6,9,14]. In the first step of the release evaluation, the amount of cumulative released substance is plotted versus time. Linear curves arise in the case of zero order kinetics, i.e., equal amounts of the drug are released in equal time intervals (Equation (1)).
First order release kinetics are typical for the release of slightly soluble drugs from solid preparations like tablets, pellets and granules dominated by slow dissolution and diffusion control. The release rate is highest at the beginning of the process, according to the large concentration gradient being the most important factor in Fick’s first law for the transport flow density by diffusion (Equation (2)), and diminishes with a decreasing concentration gradient in the course of the process.
The released amount Mt at the moment t refers to (Equation (3)), and linearization results in the Sigma minus function (Equation (4)).
The Weibull function (Equation (5)) and its linearized form (Equation (6)) presuppose first order kinetics.
Square root kinetics occurs at non-disintegrating solid matrix formulations (Equation (7)).
Cubic root kinetics are observed in the case of spherical multiparticulate formulations (linearized form, Equation (8)).
2.8. Model Independent Parameters: Difference Factor f1 and Similarity Factor f2
The difference factor f1 describes the relative error between two release profiles calculated from the cumulative released amounts Ri and Ti at distinct moments for the reference and test formulations (Equation (9)). The similarity factor f2 is based on the sum of deviation squares of the released drug amounts (Equation (10)) and describes the statistical similarity between two release profiles. The value is 100 in case of identical profiles and 50–100 for similar profiles. Both factors are used to compare the release profiles of generic and standard drug product in order to decide whether the profile of the generic drug product surpasses that of the standard. In this study, both factors are used to evaluate the differences and similarities between sodium benzoate release profiles with different polymer coatings.

(9)

(10)
2.9. Microscopically Investigation
2.10. Sphericity
2.11. SFV Measurement
3. Results and Discussion
3.1. Properties of Sodium Benzoate and Polyacrylate Coated Pellets
X50.3 (µm) | Polyacrylate Layer Thickness (µm) |
Yield (%) | Sodium Benzoate Content (%) |
Sphericity (-) |
|
---|---|---|---|---|---|
P1 | 213.0 | 6.5 | 84 | 92 | 0.91 |
P2 | 221.0 | 10.5 | |||
P3 | 232.2 | 16.1 |
3.2. Sodium Benzoate Release Kinetics
3.2.1. Double Linear Diagram (Zero Order Release Kinetics)
CoD (R2) | |||
---|---|---|---|
Model | P1 | P2 | P3 |
Zero order | 0.57 | 0.70 | 0.93 |
First order Sigma minus | 0.98 | 0.98 | 0.95 |
First order Weibull | 0.87 | 0.99 | 0.99 |
Square root | 0.81 | 0.88 | 0.94 |
Cubic root | 0.68 | 0.80 | 0.98 |
AUC (%∗min) | DE (-) | MDT (min) | |
---|---|---|---|
P1 | 14,820 | 0.82 | 32 |
P2 | 13,927 | 0.77 | 41 |
P3 | 11,587 | 0.64 | 63 |
Parameter | Evaluation | P1/P2 | P1/P3 | P2/P3 |
---|---|---|---|---|
Difference factor f1 | “equivalent” 0–15 |
12 | 24 | 25 |
Similarity factor f2 | “similar” 50–100 |
74 | 63 | 67 |
3.2.2. First Order Kinetics, Sigma Minus Function
k1 (1/min) Sigma Minus | b (-) Weibull |
1/a (-) Weibull |
t63.2% (min) Weibull |
|
---|---|---|---|---|
P1 | 0.036 | 1.08 | 0.25 | 30 |
P2 | 0.030 | 1.58 | 0.17 | 40 |
P3 | 0.020 | 1.36 | 0.17 | 70 |
3.2.3. First Order Kinetics, Weibull Function
3.2.4. Square Root Function
3.2.5. Cubic Root Function
4. Conclusions
Authors and affiliations
1 IDT Biologika, Am Pharmapark, 06861 Dessau-Roßlau, Germany
2 Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notations
M0 | initial drug dose, drug content | (%) |
Mt | released drug amount at time | (%) |
AUC | area under the curve | (%*min) |
DE | dissolution efficiency | (-) |
MDT | mean dissolution time | (min) |
Ti | released drug amount at moment t test formulation | (%) |
Ri | released drug amount at moment t reference formulation | (%) |
n | number of time points | (-) |
I | release time point | (min) |
T | moment of drug release | (min) |
k0 | release rate constant, zero order release kinetics | (%/min) |
k1 | release rate constant, first order release kinetics | (1/min) |
kq | release rate constant, square root release kinetics | (-) |
kc | release rate constant, cubic root release kinetics | (-) |
1/a | scale parameter of Weibull function | (-) |
b | shape parameter of Weibull function | (-) |
x50.3 | median of volume density distribution | (µm) |
R2 | coefficient of determination (CoD) | (-) |
A | cross section area | (m2] |
D | diffusion coefficient | (cm2/s) |
dn/dt | transport flow | (mol/min) |
dc/dx | concentration gradient | (mol/l*m) |
f1 | difference factor | (-) |
f2 | similarity factor | (-) |
Abbreviations
CoD | coefficient of determination |
P1, P2, P3 | coated pellet lots, experimental release |
P1cal, P2cal, P3cal | coated pellet lots, calculated release |
Ph.Eur. | European Pharmacopoeia |
pKa | logarithmic acid dissociation constant |
PVP | polyvinylpyrrolidone |
rpm | rotation per minute |
SB pellets | sodium benzoate coated pellets |
SFV | spatial filter velocimetry |
References
- Koch, H.P. Die Technik der Dissolutionsbestimmung. Teil 2. Experimentelle Methodik, Auflösungsgesetze, Auswertung und graphische Darstellung der Ergebnisse, Kenngrößen der Dissolution, Korrelation. Pharm. Acta Helv. 1984, 59, 130–139. [Google Scholar]
- Yonezawa, Y.; Kawase, S.; Sasaki, M.; Shinohara, I. Dissolution of solid dosage form. V. New form equations for the non-sink dissolution of a monodisperse system. Chem. Pharm. Bull. 1995, 43, 304–310. [Google Scholar] [CrossRef]
- Pereira de Almeida, L.; Simões, S.; Brito, P.; Portugal, A.; Figueiredo, M. Modeling dissolution of sparingly soluble multisized powders. J. Pharm. Sci. 1997, 86, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, Y.; Sun, J.; Zhao, N.; Sun, M.; He, Z. Preparation and in vitro/in vivo evaluation of sustained-release venlafaxine hydrochloride pellets. Int. J. Pharm. 2012, 426, 21–28. [Google Scholar] [CrossRef]
- Javadzadeh, Y.; Monajjemzadeh, F.; Safaei, E.; Adibkia, K.H. Release kinetics of sodium diclofenac from controlled release device. Pharm. Ind. 2014, 76, 1786–1793. [Google Scholar]
- Viswanadha, L.S.; Arcot, Y.; Lin, Y.-T.; Akbulut, M.E.S. A comparative investigation of release kinetics of paclitaxel from natural protein and macromolecular nanocarriers in nanoscale drug delivery systems. J. Colloid Interf. Sci. Open 2024, 15, 100120. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Li, B.; Fan, R.; Li, B.; Yin, T.; Rong, L.; Sun, J. Preparation and evaluation of tamsulosin hydrochloride sustained-release pellets modified by two-layered membrane techniques. Asian J. Pharm. Sci. 2015, 10, 31–39. [Google Scholar] [CrossRef]
- Kovacevic, J.; Mladenovic, A.; Djuris, J.; Ibric, S. Evaluation of powder, solution and suspension layering for the preparation of enteric coated pellets. Eur. J. Pharm. Sci. 2016, 85, 84–93. [Google Scholar] [CrossRef]
- Cascone, S. Modeling and comparison of release profiles: Effect of the dissolution method. Eur. J. Pharm. Sci. 2017, 106, 352–361. [Google Scholar] [CrossRef]
- Marucci, M.; Andersson, H.; Hjärtstam, J.; Stevenson, G.; Baderstedt, J.; Stading, M.; Larsson, A.; Corswant, C. New insights on how to adjust the release profile from coated pellets by varying the molecular weight of ethyl cellulose in the coating film. Int. J. Pharm. 2013, 458, 218–223. [Google Scholar] [CrossRef]
- Xu, M.; Liew, C.V.; Heng, P.W.S. Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology. Int. J. Pharm. 2015, 478, 318–327. [Google Scholar] [CrossRef]
- Villar López, E.; Luzardo Álvarez, A.; Blanco Méndez, J.; Otero Espinar, F.J. Cellulose-polysaccharide film-coating of cyclodextrin based pellets for controlled drug release. J. Drug Deliv. Sci. Technol. 2017, 42, 273–283. [Google Scholar] [CrossRef]
- Sousa, J.J.; Sousa, M.J.; Moura, M.J.; Podczeck, F.; Newton, J.M. The influence of core materials and film coating on the drug release from coated pellets. Int. J. Pharm. 2002, 233, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Krueger, C.; Thommes, M.; Kleinebudde, P. Influence of storage conditions on properties of MCC II-based pellets with theophylline-monohydrate. Eur. J. Pharm. Biopharm. 2014, 88, 483–491. [Google Scholar] [CrossRef]
- Albanez, R.; Nitz, M.; Pereira Taranto, O. Influence of the type of enteric coating suspension, coating layer and process conditions on dissolution profile and stability of coated pellets of diclofenac sodium. Powder Technol. 2015, 269, 185–192. [Google Scholar] [CrossRef]
- Kazlauske, J.; Cafaro, M.M.; Caccavo, D.; Marucci, M.; Lasson, A. Determination of the release mechanism of theophylline from pellets coated with Surelease®—A water dispersion of ethyl cellulose. Int. J. Pharm. 2017, 528, 345–353. [Google Scholar] [CrossRef]
- Hiew, T.N.; Siew, L.W.; Wannaphatchaiyong, S.; Elsergany, R.N.; Pichayakorn, W.; Boonme, P.; Heng, P.W.S.; Liew, C.V. Influence of talc and hydrogenated castor oil on the dissolution behavior of metformin-loaded pellets with acrylic-based sustained release coating. Int. J. Pharm. 2023, 640, 122984. [Google Scholar] [CrossRef]
- Alagili, M.F.; AlQuadeib, B.T.; Ashri, L.Y.; Ibrahim, M.A. Optimization and evaluation of Lisinopril mucoadhesive sustained release matrix pellets: In-vitro and ex-vivo studies. Saudi Pharm. J. 2023, 31, 101690. [Google Scholar] [CrossRef]
- Wu, S.; Zeng, Q.; Zhang, Z.; Zhang, X.; Hou, Y.; Li, Z.; Jia, C.; Liu, Y.; Li, W. Development of sinomenine hydrochloride sustained-release pellet using a novel whirlwind fluidized bed. J. Drug Deliv. Sci. Technol. 2022, 78, 103956. [Google Scholar] [CrossRef]
- Muschert, S.; Siepmann, F.; Leclercq, B.; Carlin, B.; Siepmann, J. Prediction of drug release from ethylcellulose coated pellets. J. Control Release 2009, 135, 71–79. [Google Scholar] [CrossRef]
- Yang, M.; Xie, S.; Li, Q.; Wang, Y.; Chang, X.; Shan, L.; Sun, L.; Huang, X.; Gao, C. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int. J. Pharm. 2014, 465, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Dekyndt, B.; Verin, J.; Neut, C.; Siepmann, F.; Siepmann, J. How to easily provide zero order release of freely soluble drugs from coated pellets. Int. J. Pharm. 2015, 478, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.; Thapa, R.; Choi, D.H.; Jeong, S.H. Effect of pharmaceutical processes of the quality of ethylcellulose coated pellets: Quality by Design approach. Powder Technol. 2018, 339, 25–38. [Google Scholar] [CrossRef]
- Kaur, S.; Sivasankaran, S.; Wambolt, E.; Jonnalagadda, S. Determinants of zero-order release kinetics from acetaminophen-layered Suglet® pellets, Wurster-coated with plasticized Aquacoat® ECD (ethyl cellulose dispersion). Int. J. Pharm. 2020, 573, 118873. [Google Scholar] [CrossRef]
- Kállai, N.; Luhn, O.; Dredán, J.; Kovács, K.; Lengyel, M.; Antal, I. Evaluation of drug release from coated pellets based on isomalt, sugar and microcrystalline cellulose inert cores. AAPS PharmSciTech 2010, 11, 383–391. [Google Scholar] [CrossRef]
- Priese, F.; Wolf, B. Development of high drug loaded pellets by Design of Experiment and population balance model calculation. Powder Technol. 2013, 241, 149–157. [Google Scholar] [CrossRef]
- Wiegel, D.; Eckardt, G.; Priese, F.; Wolf, B. In-line particle size measurement and agglomeration detection of pellet fluidized bed coating by Spatial Filter Velocimetry. Powder Technol. 2016, 301, 261–267. [Google Scholar] [CrossRef]
- Petrak, D.; Eckardt, G.; Dietrich, S.; Köhler, M.; Wiegel, D.; Wolf, B.; Priese, F.; Jacob, M. In-line measurement of layer thickness, agglomerate fraction and spray drying during pellet coating in the fluidized bed. Pharm. Ind. 2018, 80, 262–270. [Google Scholar]
- Priese, F.; Frisch, T.; Wolf, B. Comparison of film-coated retarded release pellets manufactured by layering technique or by fluidized bed rotor pelletization. Pharm. Dev. Technol. 2015, 20, 417–424. [Google Scholar] [CrossRef]
- Juhász, A.; Ungor, D.; Berta, K.; Seres, L.; Csapó, E. Spreadsheet-based nonlinear analysis of in vitro release properties of a model drug from colloidal carriers. J. Mol. Liq. 2021, 328, 115405. [Google Scholar] [CrossRef]
- European Pharmacopoeia 11.5, 2024. Available online: https://pheur.edqm.eu/subhome/11-5 (accessed on 29 August 2024).