CELLETS® are pellets or spheres made of microcrystalline cellulose. The size ranges from 100 µm to 1400 µm. Being neutral starter cores, they can be used as carrier system for low-dosed APIs and allow diverse functional coating. See pellet technologies for a detailed description.

CS_sphericity_image_4

Electron microscopy yield perfect imaging data of the MCC pellets’ surfaces. Magnification: 250x, working distance 8.0 mm, voltage: 10 keV.

Available size classes are (click for more information):

  • CELLETS® 100
  • CELLETS® 200
  • CELLETS® 350
  • CELLETS® 500
  • CELLETS® 700
  • CELLETS® 1000

Any size class of CELLETS® have same striking advantages:

  • low friability and extreme hardness
  • insolubility in water
  • high spherictity
  • smooth surface
  • good monodispersity

See case studies to see these starter pellets in action!

Extended-release compositions comprising atomoxetine

The following patent on “Extended-release compositions comprising atomoxetine” employs CELLETS® as starter spheres made of Microcrystalline Cellulose. Please, read below a summary.

United States Patent Application 20240299307 focuses on an extended-release formulation of atomoxetine, commonly used for treating ADHD. The patent describes a unique pellet-based drug delivery system designed to control the release of atomoxetine over an extended period. This system aims to reduce the dosing frequency and maintain steady drug levels in the bloodstream, enhancing patient compliance and reducing the side effects associated with fluctuating drug levels.

Key Elements of the Invention:

  1. Pellets: The invention uses pellets as the core of the formulation, each containing atomoxetine or a pharmaceutically acceptable salt like atomoxetine hydrochloride. The pellets are coated with a functional layer that controls the rate and duration of drug release.
  2. Extended Release: The functional coating consists primarily of cellulose acetate-based polymers like cellulose acetate phthalate or cellulose acetate butyrate. This coating slows the drug’s release, allowing for less than 40% of the atomoxetine to be released within the first two hours, ensuring a sustained release for 8 to 20 hours, depending on the coating thickness.
  3. Patient Benefits: The extended-release design minimizes the need for multiple daily doses, improving patient adherence to the treatment. Additionally, it helps maintain consistent therapeutic levels of atomoxetine in the bloodstream, reducing the side effects from rapid peaks and valleys in drug concentration.
  4. Manufacturing Process: The pellets are made by applying a drug layer over a nonpareil seed (such as CELLETS®), followed by an optional sealing layer and a functional coating that dictates the extended-release profile. These pellets can be encapsulated or compressed into tablets.

Function of CELLETS®:

CELLETS® are microcrystalline cellulose spheres commonly used as a core in pellet-based formulations. In this patent, CELLETS® act as inert carriers that provide a solid foundation for the application of atomoxetine and subsequent coatings. Their uniform size and shape ensure consistent layering of the drug and functional coatings, which is crucial for achieving the desired release profile. CELLETS® facilitate the manufacturing of multi-particulate systems where each pellet provides a controlled dose of the active ingredient. By using CELLETS®, the formulation can be tailored for extended-release by controlling the thickness of the drug and polymer layers applied to the surface​.

In summary, this patent provides an effective method to enhance the therapeutic benefits of atomoxetine, focusing on an extended-release formulation that improves patient outcomes through consistent drug release and convenient dosing.

Document information

Document Type and Number:
Kind Code: A1

Inventors:

Tu, Yu-hsing (West Windsor, NJ, US)
Chalamuri, Shanmuka Harish (Plainsboro, NJ, US)
Kathala, Kalyan (Monroe, NJ, US)
Perumal, Ashok (Monmouth Junction, NJ, US)
Lee, James A. (West Windsor, NJ, US)

Disclaimer

This text was generated by chatGPT engine version GPT‑4o, on Oct 18, 2024. Image was generated with Adobe Firefly.

Influence of Polymer Film Thickness on Drug Release from Fluidized Bed Coated Pellets

This article “Influence of Polymer Film Thickness on Drug Release from Fluidized Bed Coated Pellets and Intended Process and Product Control” was published on Pharmaceutics 202416(10), 1307; https://doi.org/10.3390/pharmaceutics16101307, under free licence on October 08, 2024 by Marcel Langner, Florian Priese, and Bertram Wolf.

Abstract

Background/Objectives: Coated drug pellets enjoy widespread use in hard gelatine capsules. In heterogeneous pellets, the drug substance is layered onto core pellets. Coatings are often applied to generate a retarded release or an enteric coating. Methods: In the present study, the thickness of a polymer coating layer on drug pellets was correlated to the drug release kinetics. Results: The question should be answered whether it is possible to stop the coating process when a layer thickness referring to an intended drug release is achieved. Inert pellets were first coated with sodium benzoate and second with different amounts of water insoluble polyacrylate in a fluidized bed apparatus equipped with a Wurster inlet. The whole process was controlled in-line and at-line with process analytical technology by the measurement of the particle size and the layer thickness. The in-vitro sodium benzoate release was investigated, and the data were linearized by different standard models and compared with the polyacrylate layer thickness. With increasing polyacrylate layer thickness the release rate diminishes. The superposition of several processes influencing the release results in release profiles corresponding approximately to first order kinetics. The coating layer thickness corresponds to a determined drug release profile. Conclusions: The manufacturing of coated drug pellets with intended drug release is possible by coating process control and layer thickness measurement. Preliminary investigations are necessary for different formulations.

1. Introduction

The drug dissolution of solid formulations depends on the solubility and dissolution rate of the drug substances and—in case of release—a number of parameters additionally influence the release kinetics: for example, drug substance interaction with formulation components (excipients), compression force and hardness in case of tablets and kind of binder in granulates, pellets and generally in polymer coatings. The knowledge of the dissolution rate and the release kinetics is essential and indispensable for optimum pharmacotherapy. Dissolution of solid substances runs approximately with first order kinetics due to diffusion processes. Certain drug formulations show zero order release with equal amounts released in equal time intervals. The superposition of several processes, for example, wetting of the solid drug dosage form, dissolution of the solid drug substance, diffusion of the drug molecules out of the dosage form, swelling of the dosage form in case of matrix formulations and swelling and water uptake of insoluble films leads to kinetic processes not meeting unambiguous zero or first order or square or cubic root equations. The release data are linearized by several models to evaluate the best approach. The coefficient of determination CoD of the linearized curve gives hints to the best adaptation and to the probability of the dominating process [1,2,3,4,5,6].
The model-independent parameters difference factor f1 and similarity factor f2 are used for release profile comparison; f1 describing the relative error between two release profiles calculated from the cumulatively released amounts at a certain time T for a test and a reference formulation or in general between two formulations—for example in the drug’s development. f2 is based on the sum of deviation squares of the released drug amounts of two release profiles [4,5,7,8,9].
Increasing attention is given to drug-loaded pellets and their release control by slowly swelling matrix systems or a final functional coating. The release of drug substances from matrix pellets prepared by extrusion/spheronization and finally coated with different amounts and types of insoluble ethylcellulose has been investigated [10,11,12]. Other authors report on the influence of the filler type on the drug release [13], the effect of the pH value of the release fluid [4], the storage conditions of drug and methylcellulose matrix pellets [14], the amount of enteric polymer coating [15] and the salt concentration of the release fluid [16]. The influence of talc and hydrogenated castor oil on the dissolution behaviour of metformin-loaded matrix pellets with an acrylic-based sustained release coating [17], the sustained release of Lisinopril from mucoadhesive matrix pellets [18] and the sustained-release of sinomenine hydrochloride from pellets manufactured by a novel whirlwind fluidized bed process have all been investigated [19].
Drug-layered inert pellets coated with polymer (heterogeneous pellets) were investigated in a similar way regarding the influence of the release kinetics by different modifications of the ethylcellulose coating [20], by ethylcellulose mixed with different amounts of polyvinylpyrrolidone (PVP) as pore former for controlled drug release [21], by alternating layers of ethylcellulose and polyvinylacetate [22], by various ethylcellulose coating levels and final curing [23] and by ethyl cellulose coating of acetaminophen-layered sugar pellets [24]. With a polyacrylate coating, the drug release from layered pellets was found to be retarded [7,25]. Variation of polymer type and layer thickness permits the control of the release rate in a wide range [8].
In our own earlier investigations heterogeneous pellets were manufactured by fluidized bed technology with a Wurster inlet. Inert microcrystalline cellulose pellets were coated with excipients and the easily water-soluble model drug sodium benzoate [26,27,28]. These sodium benzoate pellets (SB pellets) exhibited a narrow particle size distribution, high sphericity and homogeneous layers and gave very quick sodium benzoate release. For retarded release, the SB pellets were coated in a second step with different amounts of ethylcellulose, once more by fluidized bed technology with a Wurster inlet [29]. The release rate diminished with increasing layer thickness, as expected. Furthermore, the fluidized bed processes were controlled by in-line particle size measurement with the spatial filter velocimetry SFV probe [27,28] for process control regarding particle size, particle size distribution and ethylcellulose layer thickness.
The aim of the present project was the manufacturing of heterogeneous pellets in the fluidized bed with a Wurster inlet, the control of the process by in-line particle size and coating layer thickness measurements, the investigation of the kinetics of sodium benzoate release considering different kinetic models, the interpretation of the partial processes involved in the release, the correlation of the release rate with the polymer layer thickness and the detection of the coating process endpoint for the improvement of the pellet product quality regarding controlled drug release. For drug pellet manufacturing, a similar experimental approach as the one in [26,27,28] was chosen. Relatively small initial inert pellets (Cellets®175, median 170 µm), referring to a large specific surface area, were coated with a solution of sodium benzoate and a low amount of the water soluble PVP as a binder to improve the mechanical stability of the layer. In a second step (see [29]), the SB pellets were coated with different amounts of insoluble but slowly swelling polyacrylate for retarded release. The risk of undesirable agglomeration of those small pellets during sodium benzoate and polymer coating was practically eliminated by adjusting the process parameters and adding talcum to the coating fluid as an antistick agent. The SFV probe was installed for in-line particle size measurement and detection of agglomerates. The drug release was investigated and discussed applying zero order, first order, square root and cubic root equation kinetic models. Finally, the most probable release kinetics model was identified by the calculation of curve parameters—area under the curve (AUC), dissolution efficiency (DE) and mean dissolution time (MDT)—and by comparison of the CoD of the different kinetic models. The difference of the release profiles and the similarity of different polyacrylate layered pellet lots were calculated by the difference factor f1 and similarity factor f2. The linearization approach of the dissolution profiles is suitable for first order kinetics; for other release profiles a nonlinear approach can describe the dissolution curves more accurately and with a smaller standard deviation of the fitting parameter than the linearization-based calculation method [30].

2. Materials and Methods

2.1. Materials

Pellets of microcrystalline cellulose (Cellets®175, particle size range 150–200 µm, median 170 µm, IPC, Dresden, Germany), sodium benzoate (Applichem, Darmstadt, Germany, solubility 57 g in 100 g water at room temperature), PVP (Kollidon®25, Carl Roth, Karlsruhe, Germany), talcum (Talkum Pharma, C. H. Erbslöh, Krefeld, Germany), magnesium stearate (VEG Pharma, Rome, Italy) and polyacrylate dispersion (Eudragit®NE 30D, Evonik Industries, Darmstadt, Germany, containing ethylacrylate- methylmethacrylate copolymer 30% w/w) were used. All substances conform to European Pharmacopoeia (Ph.Eur.) quality [31].

2.2. Formulation of Sodium Benzoate-Coated Pellets

Microcrystalline cellulose pellets were coated with an aqueous solution of sodium benzoate 30% (w/w), PVP 1.5% (w/w) and talcum 0.5% (w/w) in a first coating step (Table 1). Sodium benzoate and PVP were dissolved one after another in purified water and finally talcum was suspended under agitation with a blade stirrer.
Table 1. Sodium benzoate pellet formulation.
Content (%)
Sodium benzoate 32.6
Microcrystalline cellulose 65.3
PVP 1.6
Talcum 0.5
100.0

2.3. Formulation of Polyacrylate-Coated Sodium Benzoate Pellets

In a second coating step, SB pellets were layered with polyacrylate in three different concentration lots P1 (11.1% w/w PVP), P2 (14.3% w/w) and P3 (17.6% w/w). Magnesium stearate and talcum were added to the coating fluid as a plasticizer and an antistick agent, respectively (Table 2). The polyacrylate coating fluid contains a polyacrylate copolymer 13.3% (w/w), magnesium stearate 1.3% (w/w) and talcum 5.3% (w/w). A Eudragit®NE 30D dispersion was added to a beaker, and magnesium stearate and talcum were added one after another under strong agitation and homogenization by a disperser (Ultra Turrax T50 standard, Janke & Kunkel, IKA Labortechnik, Staufen, Germany, disperser length 225 mm, diameter 18 mm, rotation 5000 rpm).
Table 2. Polyacrylate coated sodium benzoate pellet.
Lot P1 P2 P3
Content (%)
Sodium benzoate 25.9 24.4 22.9
Microcrystalline cellulose 55.7 52.6 49.3
PVP 1.3 1.2 1.1
Polyacrylate 11.1 14.3 17.6
Talcum 4.9 6.1 7.4
Magnesium stearate 1.1 1.4 1.7
100.0 100.0 100.0

2.4. Fluidized Bed Pellet Coating

The coating process was performed in a batch laboratory fluidized bed apparatus (GPCG 1.1, Glatt, Binzen, Germany) with a Wurster inlet and SFV probe installed into the process chamber [27]. A 1.0 mm diameter spray nozzle with a nozzle cap position of 2.5 scales was used. The distance of the lower end of the cylinder from the perforated bottom plate B was fixed to 20 mm. The process air volume rate was variable and adapted to the increasing weight of the pellets during the coating process in a range of 40–60 m3/h.
Cellets®175 were coated with the sodium benzoate/PVP/talcum aqueous fluid in a first step (Table 3). The second coating step with polyacrylate dispersion was performed under smooth conditions (lower spray rate and reduced process air temperature) to avoid the risk of the pellets adhering and sticking together. The polyacrylate coated pellets were finally tempered (one hour, 30 °C) in a tray dryer as a thin layer on a steel dish for coalescence and film forming completion.
Table 3. Process parameters of pellet fluidized bed coating with sodium benzoate (first step) and polyacrylate (second step).
Parameter First Step Second Step
Sodium benzoate Polyacrylate
Pellet batch (g) 300
Process air temperature (°C) 80 40
Product temperature (°C) 40 25
Process air volume rate (m3/h) 40–60
Spray rate (g/min) 20 6
Spray pressure (bar) 3

2.5. Particle Size Coating Layer Thickness Measurement with SFV Probe

The particle size and thickness of the coating layer were measured in-line by the SFV probe (IPP 70, Parsum, Chemnitz, Germany). The probe was directly installed into the down-bed zone of the process chamber. Details of probe measurement are described elsewhere [27,28].

2.6. Sodium Benzoate Release and Content Investigation

The release was investigated with the dissolution tester (PTW 2, Pharmatest, Hainburg, 6 vessels, 1.0 L purified water, 37 °C, blade rotation 75 rpm). The sampling was performed after 10, 20, 30, 45, 60, 120 and 180 min. Samples were withdrawn and refilled by purified water. Sodium benzoate was analysed with a UV–Vis-Spectrophotometer (Spekol 1300, Analytik Jena, Germany, 1 cm quartz cuvette, wave length 220 nm).
For the sodium benzoate content investigation, 50 mg pellets (13.5 mg of which being sodium benzoate) were dispersed in 1.0 L purified water. The sodium benzoate dissolution and release were proved to be complete after 4 h and the content was analysed as above.

2.7. Linearization of Release Curves

The evaluation of the release curves was performed according to the different models of release kinetics also used by a number of authors [1,3,5,6,9,14]. In the first step of the release evaluation, the amount of cumulative released substance is plotted versus time. Linear curves arise in the case of zero order kinetics, i.e., equal amounts of the drug are released in equal time intervals (Equation (1)).

Mt = −k0 ∗ t + M0

First order release kinetics are typical for the release of slightly soluble drugs from solid preparations like tablets, pellets and granules dominated by slow dissolution and diffusion control. The release rate is highest at the beginning of the process, according to the large concentration gradient being the most important factor in Fick’s first law for the transport flow density by diffusion (Equation (2)), and diminishes with a decreasing concentration gradient in the course of the process.

1/A ∗ dn/dt = −D ∗ dc/dx

The released amount Mt at the moment t refers to (Equation (3)), and linearization results in the Sigma minus function (Equation (4)).

Mt = M0 ∗ (1 − exp(−k1∗t))
ln (M0 − Mt) = ln (M0) − k1 ∗ t

The Weibull function (Equation (5)) and its linearized form (Equation (6)) presuppose first order kinetics.

Mt = M0 ∗ (1− exp (−t b/a)
ln (−ln (1−Mt/M0)) = b ∗ ln (t) − ln (a)

Square root kinetics occurs at non-disintegrating solid matrix formulations (Equation (7)).

Mt = kq ∗ √ t

Cubic root kinetics are observed in the case of spherical multiparticulate formulations (linearized form, Equation (8)).

Mt = M0 − kc ∗ t

2.8. Model Independent Parameters: Difference Factor f1 and Similarity Factor f2

The difference factor f1 describes the relative error between two release profiles calculated from the cumulative released amounts Ri and Ti at distinct moments for the reference and test formulations (Equation (9)). The similarity factor f2 is based on the sum of deviation squares of the released drug amounts (Equation (10)) and describes the statistical similarity between two release profiles. The value is 100 in case of identical profiles and 50–100 for similar profiles. Both factors are used to compare the release profiles of generic and standard drug product in order to decide whether the profile of the generic drug product surpasses that of the standard. In this study, both factors are used to evaluate the differences and similarities between sodium benzoate release profiles with different polymer coatings.

Eq9

(9)

Eq10

(10)

2.9. Microscopically Investigation

Coated pellets were placed on black paper for an improved contrast. Size and shape were investigated with a stereo light microscope (Stemi 2000-C, Carl Zeiss, Oberkochen, Germany, ocular: W-PI, 10×/23, magnification: 5.0, 50 scale = 1 mm). Photographs were shot by mobile.

2.10. Sphericity

The sphericity of the pellet lots was measured by digital image processing (Camsizer®, Retsch, Haan, measuring particle size range 40–3000 µm, measured particles 20,000 per second). The chord length was used for the evaluation of particle size and particle size distribution.

2.11. SFV Measurement

The SFV probe was installed directly into the process chamber of the fluidized bed apparatus between the inner chamber wall and the Wurster inlet. Details are described elsewhere [27].

3. Results and Discussion

3.1. Properties of Sodium Benzoate and Polyacrylate Coated Pellets

SB pellets are received as a free-flowing material. The coating process runs without disturbances, and the special fluidized bed pattern with a Wurster inlet was homogeneous. The product shows a narrow particle size distribution [27]. The median x50.3 increases from 170 µm of uncoated Cellets®175 to 200 µm, and the sphericity of both initial Cellets®175 and SB pellets is above 0.9.
The polyacrylate coating of SB pellets is performed without undesired agglomeration; only very few twins and triplets are detected by microscopic observation (Figure 1). The median of polyacrylate pellets grows to 232.2 µm and the layer thickness to 16.1 µm (Table 4, P3, 17.6% polyacrylate content). The product yield losses and the incomplete sodium benzoate recovery derive from a material precipitation at the textile filter and the inner chamber wall. A sphericity above 0.9 indicates the existence of spherical products and a homogeneous processing.
Figure 1. SEM photograph of a polyacrylate coated SB pellet.
Influence of Polymer Film Thickness on Drug Release from Fluidized Bed Coated Pellets

Influence of Polymer Film Thickness on Drug Release from Fluidized Bed Coated Pellets

Table 4. Median, polyacylate layer thickness, product yield, sodium benzoate content and sphericity of polyacrylate coated SB pellets.
X50.3 (µm) Polyacrylate
Layer
Thickness (µm)
Yield (%) Sodium
Benzoate
Content (%)
Sphericity
(-)
P1 213.0 6.5 84 92 0.91
P2 221.0 10.5
P3 232.2 16.1

3.2. Sodium Benzoate Release Kinetics

3.2.1. Double Linear Diagram (Zero Order Release Kinetics)

After five minutes, more than 90% of the sodium benzoate is dissolved from SB pellets without a polymer layer due to a high solubility and a high dissolution rate. Showing properties of a strong electrolyte (sodium salt of benzoic acid with pKa of 4.19, indicating a strong acid [31]), a considerable dissociation into sodium cations and benzoate anions takes place. The release from polyacrylate coated pellets is characterized by exponential curves (Figure 2). In general, the release rate decreases with the increasing polyacrylate layer thickness. The insoluble polyacrylate acts as a release barrier. After ten minutes, 30% sodium benzoate at low coating (P1), 20% at medium coating (P2) and 8% at high coating (P3) is released. The sodium benzoate dissolution rate is rather implausible as a release controlling process step. The diffusion of sodium benzoate molecules and sodium and benzoate ions out of the polymer layer forced by a high concentration gradient in the initial phase seems to be the rate controlling process. The release process starts with a high rate, and, in the terminal phase, the rate diminishes due to a nearly complete sodium benzoate release and a low concentration gradient across the polyacrylate film. In the case of the low polyacrylate coating, the CoD of the zero order kinetics amounts to 0.57 (Table 5, P1), giving no probability for zero order release kinetics at all. The diffusion process referring to first order kinetics seems to be the rate controlling step. Otherwise, the zero order CoD increases with the increasing polyacrylate layer thickness (P2: 0.70, P3: 0.93), indicating the growing influence and interaction of other processes like polymer swelling and retarded diffusion over a prolonged diffusion distance. With an increasing polyacrylate amount the release rate decreases, as indicated by the decreasing AUC, decreasing DE and increasing MDT (Table 6).
Figure 2. Double linear plot of the sodium benzoate release, SB pellets without polyacrylate layer, experimental release from polyacrylate-coated lots P1, P2 and P3 with increasing layer thickness and calculated release P1cal, P2cal and P3cal.
Influence of Polymer Film Thickness on Drug Release from Fluidized Bed Coated Pellets 002

Influence of Polymer Film Thickness on Drug Release from Fluidized Bed Coated Pellets 002

Table 5. CoD of sodium benzoate release profiles, kinetic models of zero order, first order, square root and cubic root; lots P1, P2 and P3.
CoD (R2)
Model P1 P2 P3
Zero order 0.57 0.70 0.93
First order Sigma minus 0.98 0.98 0.95
First order Weibull 0.87 0.99 0.99
Square root 0.81 0.88 0.94
Cubic root 0.68 0.80 0.98
Table 6. Area under the curve, AUC, dissolution efficiency, DE, and mean dissolution time, MDT, of sodium benzoate release; lots P1, P2 and P3.
AUC (%∗min) DE (-) MDT (min)
P1 14,820 0.82 32
P2 13,927 0.77 41
P3 11,587 0.64 63
The release profiles of lots P1 and P2 (Figure 2) differ only slightly, so the f1 of 12 (Table 7) is in the range below 15 and indicates equivalence between P1 and P2; whereas the deviation of the profiles of P1/P3 and P2/P3 is much more pronounced due to thicker polyacrylate coating layers leading to an f1 above 15 and to the evaluation “not equivalent” regarding the relative error between both release profiles calculated from the cumulative released amounts Ri and Ti at certain moments. The increasing coating layer thickness leads to clearly different release profiles.
Table 7. Difference factor and similarity factor of sodium benzoate release profiles, comparison of lots P1, P2 and P3.
Parameter Evaluation P1/P2 P1/P3 P2/P3
Difference factor f1 “equivalent”
0–15
12 24 25
Similarity factor f2 “similar”
50–100
74 63 67
The similarity factor f2 decreases with the increasing layer thickness and diminished release rate, which is obvious comparing P1 with P2 (74) and P1 with P3 (63). Nevertheless, both f2s confirm the similarity of the release profiles.
Release curves (P1cal, P2cal and P3cal, Figure 2) were calculated according to first order kinetics (Equation (2)) and by use of the experimental release rate constants of P1, P2 and P3 (Table 5) from the Sigma minus plots (Figure 3).
Figure 3. First order Sigma minus function of the experimental and calculated (cal) sodium benzoate release, lots P1, P2 and P3.
 Influence of Polymer Film Thickness on Drug Release from Fluidized Bed Coated Pellets 003

Influence of Polymer Film Thickness on Drug Release from Fluidized Bed Coated Pellets 003

The double linear drawn calculated curves (grey colour) meet roughly the corresponding experimental curves (black colour, Figure 2). The deviation of the experimental from the calculated curve is highest for P3 with the thick polyacrylate layer due to an increased coincidence of the following processes and circumstances: slow polyacrylate film wetting and swelling, slow water molecule uptake and diffusion through the polyacrylate film to the sodium benzoate layer, dissolution of sodium benzoate and diffusion through the swollen polymer film into the release fluid. The high thickness of the polyacrylate layer and therefore the long diffusion path and change of the sodium benzoate concentration gradient via the polyacrylate layer with the ongoing process is of important influence on the release rate.

3.2.2. First Order Kinetics, Sigma Minus Function

The Sigma minus function gives linear trends of the sodium benzoate release (Figure 3) according to first order kinetics and a CoD above 0.9 (Table 5). The release rate constant k1 decreases with growing polyacrylate coating (Table 8). The calculated curves P1cal and P2cal (Equation (3)) meet the experimental curves of P1 and P2, respectively (Figure 3). The diffusion of sodium benzoate through the polyacrylate layer and to some extent the polymer swelling are the rate controlling steps. The more pronounced deviation of the experimental from the calculated curve in case of P3 is explained by the reasons mentioned above.
Table 8. First order release parameters of the Sigma minus and Weibull function, lots P1, P2 and P3.
k1 (1/min) Sigma Minus b (-)
Weibull
1/a (-)
Weibull
t63.2% (min)
Weibull
P1 0.036 1.08 0.25 30
P2 0.030 1.58 0.17 40
P3 0.020 1.36 0.17 70

3.2.3. First Order Kinetics, Weibull Function

The Weibull function gives linear curves (Figure 4) comparable to the Sigma minus function (Figure 3) with coefficients of determination of 0.99 for P2 and P3 (higher polyacrylate coating) and a value of 0.87 for P1 (Table 5) due to the fast release in the initial phase and finally the slow release rate after 45 min (x-axis value 3.8, Figure 5).
Figure 4. First order Weibull function of the experimental sodium benzoate release, lots P1, P2 and P3.
Pharmaceutics 16 01307 g004
Figure 5. Weibull function release parameter t63.2% versus coating layer thickness, lots P1 (coefficient of determination 0.87, polyacrylate content 6.5%), P2 (0.99, 10.5%) and P3 (0.99, 16.1%).
Pharmaceutics 16 01307 g005
A shape parameter of 1 indicates a monophasic and b > 1 a multiphasic release process with an initial lag time due to a wetting and a swelling of the polyacrylate film in the present case and an accelerated release rate up to the inflection point by high concentration gradient followed by a slower release rate due to a concentration gradient decrease when the drug dissolution and the release are finished. P1 with low coating gives nearly monophasic release kinetics (shape parameter 1.08, Table 8) whereas P2 (1.58) and P3 (1.36) give hints of a pronounced multiphasic release. The scale parameter (1/a) refers numerically to the rate constant and decreases with the increasing coating layer thickness (Table 8). The time parameter t63.2% is the moment when 63.2% of sodium benzoate is released. The value ascends with the increasing polyacrylate layer thickness from 30 to 70 min (Table 8 and Figure 5, compare also Figure 2).
The polyacrylate coating layer thickness (Table 4) proves to have a strong influence on the release kinetics. The manufacturing of coated pellet products with the intended drug release may be realized in the following way: pellet lots are manufactured with an increasing coating layer thickness in a preliminary step on a laboratory scale. The layer thickness is measured by the SFV probe. The in vitro drug release of these lots is investigated and correlated with the polymer coating layer thickness. The coating process in the production scale is interrupted when the desired coating layer thickness is detected.

3.2.4. Square Root Function

The cumulative release plot versus the square root of time gives straight lines in case of a drug release by diffusion from non-disintegrating matrices like matrix tablets and semisolid systems (ointments, creams). Lots P1 and P2 show nearly straight lines in the time interval 10 to 60 min (Figure 6). The initial phase up to 10 min and the terminal phase after 60 min do not meet the square root model. CoDs reach values between 0.81 (P1) and 0.94 (P3, Table 5). This model is not suitable to describe the release profile in the present case of drug pellets with an insoluble but swellable polymer coating.
Figure 6. Square root function of the experimental sodium benzoate release, lots P1, P2 and P3.
Pharmaceutics 16 01307 g006

3.2.5. Cubic Root Function

The cubic root function is valid for a dissolution of spherical particles due to reduction of weight and surface area. The difference of cubic roots of dose and cumulative released substance plotted versus time should give straight lines. This is not the case with the sodium benzoate release from polyacrylate coated pellets (Figure 7). The deviation from the linearity is pronounced for P1 and P2 in the terminal release phase after 45 min (CoD 0.68 and 0.80, respectively, Table 5) whereas the slow releasing P3 gives a curve with a DoD of 0.98. Only at a thick polyacrylate layer does the cubic root model seem to be suitable to describe the release kinetics, whereas the lower coated lots P1 and P2 do not refer to cubic root kinetics and dissolution of spheres.
Figure 7. Cubic root function of the experimental sodium benzoate release, lots P1, P2 and P3.
Pharmaceutics 16 01307 g007

4. Conclusions

Inert Cellets®175 were coated in a first step with the model drug sodium benzoate and in a second step with a water insoluble polyacrylate dispersion in a fluidized bed with a Wurster inlet. Particle size increase and coating layer thickness were measured in-line over the whole processes by the SFV probe and detected at each moment of the process. The in vitro sodium benzoate release was investigated and release profiles were linearized and evaluated with different kinetic models.
With the increasing polyacrylate coating layer thickness, the sodium benzoate release rate decreases, as evaluated by release parameters, release rate constants, AUC, MDT and DE. A difference factor f1 above 15 showed dissimilar release rate profiles for lower coated (P1, P2) compared with high coated (P3) polyacrylate SB pellets, indicating a significant influence of the coating layer thickness on the sodium benzoate release. The similarity factors f2 of 67 to 74 refer to similar release profiles of the lots P1, P2 and P3.
The high CoD of linearized sodium benzoate release profiles in the case of the polyacrylate coating predetermined first order kinetics as the most applicable, which is explained by the significant influence of the sodium benzoate diffusion through the swollen polyacrylate film outside of the pellets. With the increasing coating layer thickness, the polymer swelling, the long-distance diffusion process for both water and sodium benzoate and the increase of the concentration gradient become stronger influences on the release profiles.
The detailed investigation of the release rate profiles as dependent on the polymer coating layer thickness permits the detection of the coating process endpoint and the manufacturing of a custom-made coated drug pellet product with a defined drug release.

Authors and affiliations

Marcel Langner (1), Florian Priese (2), and Bertram Wolf (2)
1 IDT Biologika, Am Pharmapark, 06861 Dessau-Roßlau, Germany
2 Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany

Author Contributions

Conceptualization, B.W.; methodology, M.L.; data curation, B.W.; writing—original draft preparation, M.L.; writing—review and editing, F.P. and B.W.; supervision, F.P.; project administration, B.W.; funding acquisition, F.P. All authors have read and agreed to the published version of the manuscript.

Funding

This work was financially supported by the Federal Ministry of Education and Research of Germany (BMBF) within the research project WIGRATEC+ and the German Research Foundation (Deutsche Forschungsgemeinschaft DFG)—project number 491460386—plus the Open Access Publishing Fund of Anhalt University of Applied Sciences.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All relevant data are available in the article.

Conflicts of Interest

The authors declare no conflicts of interest.

Notations

M0 initial drug dose, drug content (%)
Mt released drug amount at time (%)
AUC area under the curve (%*min)
DE dissolution efficiency (-)
MDT mean dissolution time (min)
Ti released drug amount at moment t test formulation (%)
Ri released drug amount at moment t reference formulation (%)
n number of time points (-)
I release time point (min)
T moment of drug release (min)
k0 release rate constant, zero order release kinetics (%/min)
k1 release rate constant, first order release kinetics (1/min)
kq release rate constant, square root release kinetics (-)
kc release rate constant, cubic root release kinetics (-)
1/a scale parameter of Weibull function (-)
b shape parameter of Weibull function (-)
x50.3 median of volume density distribution (µm)
R2 coefficient of determination (CoD) (-)
A cross section area (m2]
D diffusion coefficient (cm2/s)
dn/dt transport flow (mol/min)
dc/dx concentration gradient (mol/l*m)
f1 difference factor (-)
f2 similarity factor (-)

Abbreviations

CoD coefficient of determination
P1, P2, P3 coated pellet lots, experimental release
P1cal, P2cal, P3cal coated pellet lots, calculated release
Ph.Eur. European Pharmacopoeia
pKa logarithmic acid dissociation constant
PVP polyvinylpyrrolidone
rpm rotation per minute
SB pellets sodium benzoate coated pellets
SFV spatial filter velocimetry

References

  1. Koch, H.P. Die Technik der Dissolutionsbestimmung. Teil 2. Experimentelle Methodik, Auflösungsgesetze, Auswertung und graphische Darstellung der Ergebnisse, Kenngrößen der Dissolution, Korrelation. Pharm. Acta Helv. 198459, 130–139. [Google Scholar]
  2. Yonezawa, Y.; Kawase, S.; Sasaki, M.; Shinohara, I. Dissolution of solid dosage form. V. New form equations for the non-sink dissolution of a monodisperse system. Chem. Pharm. Bull. 199543, 304–310. [Google Scholar] [CrossRef]
  3. Pereira de Almeida, L.; Simões, S.; Brito, P.; Portugal, A.; Figueiredo, M. Modeling dissolution of sparingly soluble multisized powders. J. Pharm. Sci. 199786, 726–732. [Google Scholar] [CrossRef] [PubMed]
  4. Liu, Y.; Sun, Y.; Sun, J.; Zhao, N.; Sun, M.; He, Z. Preparation and in vitro/in vivo evaluation of sustained-release venlafaxine hydrochloride pellets. Int. J. Pharm. 2012426, 21–28. [Google Scholar] [CrossRef]
  5. Javadzadeh, Y.; Monajjemzadeh, F.; Safaei, E.; Adibkia, K.H. Release kinetics of sodium diclofenac from controlled release device. Pharm. Ind. 201476, 1786–1793. [Google Scholar]
  6. Viswanadha, L.S.; Arcot, Y.; Lin, Y.-T.; Akbulut, M.E.S. A comparative investigation of release kinetics of paclitaxel from natural protein and macromolecular nanocarriers in nanoscale drug delivery systems. J. Colloid Interf. Sci. Open 202415, 100120. [Google Scholar] [CrossRef]
  7. Wang, J.; Sun, Y.; Li, B.; Fan, R.; Li, B.; Yin, T.; Rong, L.; Sun, J. Preparation and evaluation of tamsulosin hydrochloride sustained-release pellets modified by two-layered membrane techniques. Asian J. Pharm. Sci. 201510, 31–39. [Google Scholar] [CrossRef]
  8. Kovacevic, J.; Mladenovic, A.; Djuris, J.; Ibric, S. Evaluation of powder, solution and suspension layering for the preparation of enteric coated pellets. Eur. J. Pharm. Sci. 201685, 84–93. [Google Scholar] [CrossRef]
  9. Cascone, S. Modeling and comparison of release profiles: Effect of the dissolution method. Eur. J. Pharm. Sci. 2017106, 352–361. [Google Scholar] [CrossRef]
  10. Marucci, M.; Andersson, H.; Hjärtstam, J.; Stevenson, G.; Baderstedt, J.; Stading, M.; Larsson, A.; Corswant, C. New insights on how to adjust the release profile from coated pellets by varying the molecular weight of ethyl cellulose in the coating film. Int. J. Pharm. 2013458, 218–223. [Google Scholar] [CrossRef]
  11. Xu, M.; Liew, C.V.; Heng, P.W.S. Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology. Int. J. Pharm. 2015478, 318–327. [Google Scholar] [CrossRef]
  12. Villar López, E.; Luzardo Álvarez, A.; Blanco Méndez, J.; Otero Espinar, F.J. Cellulose-polysaccharide film-coating of cyclodextrin based pellets for controlled drug release. J. Drug Deliv. Sci. Technol. 201742, 273–283. [Google Scholar] [CrossRef]
  13. Sousa, J.J.; Sousa, M.J.; Moura, M.J.; Podczeck, F.; Newton, J.M. The influence of core materials and film coating on the drug release from coated pellets. Int. J. Pharm. 2002233, 111–122. [Google Scholar] [CrossRef] [PubMed]
  14. Krueger, C.; Thommes, M.; Kleinebudde, P. Influence of storage conditions on properties of MCC II-based pellets with theophylline-monohydrate. Eur. J. Pharm. Biopharm. 201488, 483–491. [Google Scholar] [CrossRef]
  15. Albanez, R.; Nitz, M.; Pereira Taranto, O. Influence of the type of enteric coating suspension, coating layer and process conditions on dissolution profile and stability of coated pellets of diclofenac sodium. Powder Technol. 2015269, 185–192. [Google Scholar] [CrossRef]
  16. Kazlauske, J.; Cafaro, M.M.; Caccavo, D.; Marucci, M.; Lasson, A. Determination of the release mechanism of theophylline from pellets coated with Surelease®—A water dispersion of ethyl cellulose. Int. J. Pharm. 2017528, 345–353. [Google Scholar] [CrossRef]
  17. Hiew, T.N.; Siew, L.W.; Wannaphatchaiyong, S.; Elsergany, R.N.; Pichayakorn, W.; Boonme, P.; Heng, P.W.S.; Liew, C.V. Influence of talc and hydrogenated castor oil on the dissolution behavior of metformin-loaded pellets with acrylic-based sustained release coating. Int. J. Pharm. 2023640, 122984. [Google Scholar] [CrossRef]
  18. Alagili, M.F.; AlQuadeib, B.T.; Ashri, L.Y.; Ibrahim, M.A. Optimization and evaluation of Lisinopril mucoadhesive sustained release matrix pellets: In-vitro and ex-vivo studies. Saudi Pharm. J. 202331, 101690. [Google Scholar] [CrossRef]
  19. Wu, S.; Zeng, Q.; Zhang, Z.; Zhang, X.; Hou, Y.; Li, Z.; Jia, C.; Liu, Y.; Li, W. Development of sinomenine hydrochloride sustained-release pellet using a novel whirlwind fluidized bed. J. Drug Deliv. Sci. Technol. 202278, 103956. [Google Scholar] [CrossRef]
  20. Muschert, S.; Siepmann, F.; Leclercq, B.; Carlin, B.; Siepmann, J. Prediction of drug release from ethylcellulose coated pellets. J. Control Release 2009135, 71–79. [Google Scholar] [CrossRef]
  21. Yang, M.; Xie, S.; Li, Q.; Wang, Y.; Chang, X.; Shan, L.; Sun, L.; Huang, X.; Gao, C. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int. J. Pharm. 2014465, 187–196. [Google Scholar] [CrossRef] [PubMed]
  22. Dekyndt, B.; Verin, J.; Neut, C.; Siepmann, F.; Siepmann, J. How to easily provide zero order release of freely soluble drugs from coated pellets. Int. J. Pharm. 2015478, 31–38. [Google Scholar] [CrossRef] [PubMed]
  23. Thapa, P.; Thapa, R.; Choi, D.H.; Jeong, S.H. Effect of pharmaceutical processes of the quality of ethylcellulose coated pellets: Quality by Design approach. Powder Technol. 2018339, 25–38. [Google Scholar] [CrossRef]
  24. Kaur, S.; Sivasankaran, S.; Wambolt, E.; Jonnalagadda, S. Determinants of zero-order release kinetics from acetaminophen-layered Suglet® pellets, Wurster-coated with plasticized Aquacoat® ECD (ethyl cellulose dispersion). Int. J. Pharm. 2020573, 118873. [Google Scholar] [CrossRef]
  25. Kállai, N.; Luhn, O.; Dredán, J.; Kovács, K.; Lengyel, M.; Antal, I. Evaluation of drug release from coated pellets based on isomalt, sugar and microcrystalline cellulose inert cores. AAPS PharmSciTech 201011, 383–391. [Google Scholar] [CrossRef]
  26. Priese, F.; Wolf, B. Development of high drug loaded pellets by Design of Experiment and population balance model calculation. Powder Technol. 2013241, 149–157. [Google Scholar] [CrossRef]
  27. Wiegel, D.; Eckardt, G.; Priese, F.; Wolf, B. In-line particle size measurement and agglomeration detection of pellet fluidized bed coating by Spatial Filter Velocimetry. Powder Technol. 2016301, 261–267. [Google Scholar] [CrossRef]
  28. Petrak, D.; Eckardt, G.; Dietrich, S.; Köhler, M.; Wiegel, D.; Wolf, B.; Priese, F.; Jacob, M. In-line measurement of layer thickness, agglomerate fraction and spray drying during pellet coating in the fluidized bed. Pharm. Ind. 201880, 262–270. [Google Scholar]
  29. Priese, F.; Frisch, T.; Wolf, B. Comparison of film-coated retarded release pellets manufactured by layering technique or by fluidized bed rotor pelletization. Pharm. Dev. Technol. 201520, 417–424. [Google Scholar] [CrossRef]
  30. Juhász, A.; Ungor, D.; Berta, K.; Seres, L.; Csapó, E. Spreadsheet-based nonlinear analysis of in vitro release properties of a model drug from colloidal carriers. J. Mol. Liq. 2021328, 115405. [Google Scholar] [CrossRef]
  31. European Pharmacopoeia 11.5, 2024. Available online: https://pheur.edqm.eu/subhome/11-5 (accessed on 29 August 2024).
Firefly How to improve the dissolution performance of rivaroxaban. 18547 example image
fig-3_Plasticity of Microcrystalline Cellulose Spheres

Abstract

Compaction pressure can induce an undesirable solid-state polymorphic transition in drugs, fragmentation, loss of coated pellet integrity, and the decreased viability and vitality of microorganisms. Thus, the excipients with increased plasticity can be considered as an option to decrease the undesirable effects of compaction pressure. This study aims to increase the plasticity (to reduce the mean yield pressure; Py) of dried microcrystalline cellulose (MCC) by loading it with a specially selected plasticizer. Diethyl citrate (DEC), water, and glycerol were the considered plasticizers. Computation of solubility parameters was used to predict the miscibility of MCC with plasticizers (possible plasticization effect). Plasticizer-loaded MCC spheres with 5.0 wt.% of water, 5.2 wt.% of DEC, and 4.2 wt.% glycerol were obtained via the solvent method, followed by solvent evaporation. Plasticizer-loaded formulations were characterised by TGA, DSC, pXRD, FTIR, pressure-displacement profiles, and in-die Heckel plots. Py was derived from the in-die Heckel analysis and was used as a plasticity parameter. In comparison with non-plasticized MCC (Py = 136.5 MPa), the plasticity of plasticizer-loaded formulations increased (and Py decreased) from DEC (124.7 MPa) to water (106.6 MPa) and glycerol (99.9 MPa), and that was in full accordance with the predicted miscibility likeliness order based on solubility parameters. Therefore, water and glycerol were able to decrease the Py of non-plasticized MCC spheres by 16.3 and 30.0%, respectively. This feasibility study showed the possibility of modifying the plasticity of MCC by loading it with a specially selected plasticizer.

References to “The Increase in the Plasticity of Microcrystalline Cellulose Spheres’ When Loaded with a Plasticizer”

Authors: Artūrs Paulausks, Tetiana Kolisnyk and Valentyn Mohylyuk

First published: Pharmaceutics 202416(7), 945; https://doi.org/10.3390/pharmaceutics16070945

1. Introduction

Being non-invasive and, in most cases, not requiring medical assistance, tablets for oral administration are the most widespread and the most popular pharmaceutical and nutraceutical dosage forms. Despite the rising topic of individualised/personalised medicine, including individualised dosing, drug release, and customer properties, national healthcare systems worldwide are highly dependent on the mass-market production of tablets and their usage following treatment protocols.
In the vast majority of cases, pharmaceutical substances cannot be converted into tablets via tableting with high-speed rotary tablet presses [1]. To achieve the desirable mechanical and biopharmaceutical properties, specific excipients are required. Appropriate mechanical properties, such as tablet hardness (or tensile strength) and abrasion resistance (friability) should ensure tablet applicability to transportation, coating, and packaging processes without losing their appearance, dose, and biopharmaceutical properties. Moreover, the intrinsic properties of tablet excipients and the structural-mechanical properties of the tablets formed eventually affect the disintegration and drug release behaviour of the dosage form, and so, can be deliberately selected to achieve the desired release profile [2].
Upon tableting, the compaction pressure and tableting speed (dwell time) induce elastic and plastic deformation, or fragmentation, and affect the extent of these deformations [3]. The tableting cycle can be described with a force–displacement profile: the distance between punches, which is plotted against the compaction pressure or force. This can be determined with state-of-the-art equipment, such as compaction simulators containing hi-tech sensors and sophisticated user-friendly software [4,5].
fig-1_Plasticity of Microcrystalline Cellulose Spheres

Figure 1. An example of a force-displacement profile highlighting: the rearrangement energy (E1), plastic energy (E2 + E4), elastic energy (E3; or energy lost), plastic flow energy (E4), compaction energy (E1 + E2 + E3), and mean yield pressure (Py). The arrows on the curve are showing the direction of curve development.

Considering the true density of the material, an in-die Heckel plot can be built: ln(1/porosity) is plotted against the compaction pressure. The greater the slope of the linear region (K), the greater the degree of plasticity of the material [6]. The mean yield pressure (Py) of the solid is reciprocal to K [7] and describes the point after which the deformation is irreversible (pointed out in Figure 1). It should be stressed that the mean yield pressure from the in-die Heckel analysis can be used as a reliable plasticity parameter: the lower the Py, the greater the degree of plasticity of the material [8].
Possessing information about the Py of each ingredient in the blend allows predicting the sequence of the events of the material irreversible deformations upon tableting cycle. Consequently, the targeted composition of a tableting blend based on excipients’ Py can predetermine the deformation (the extent of deformation) of the specific ingredients in this blend upon tableting at a specific compaction pressure [9]. Considering the possibility of undesirable solid-state polymorphic transition of the drug [10,11], particle fragmentation, the loss of coated pellet integrity [12,13], and the decreased viability and vitality of microorganisms [14,15] as a function of compaction pressure, the above-mentioned circumstances are of particular interest.
Microcrystalline cellulose (MCC) is a partially depolymerised, naturally occurring polymer in the form of crystalline powder or spheroids composed of porous particles [16], and it is one of the most commonly used excipients in tablet formulations [17]. MCC is used for direct compression (up to 90 wt.%), dried granulation/roll-compaction, and wet granulation to achieve tablets with desirable mechanical and biopharmaceutical properties [3,10,16]. MCC is recognised as an excipient with relatively low Py that undergoes plastic deformation at relatively low compression forces [3].
The effect of water on the plasticization of the MCC as well as its effect on the compaction properties upon tableting has been previously reported [18,19,20]. To the best of our knowledge, the information regarding MCC plasticization with other solvents or excipients in order to influence the compaction properties upon tableting is lacking. Nevertheless, the practice of modulating cellulose derivatives plasticity for film forming [21,22], hot-melt extrusion, and/or fusion deposition modelling 3D-printing [23,24] is common practice. While solubility parameters were found to be a useful instrument for plasticizer pre-screening [24,25].
This study aims to increase the plasticity (to reduce the Py) of MCC by loading it with a specially selected (based on the solubility parameters) plasticizer. It was assumed that a lower Py of the MCC could enable tablets to be prepared at lower compaction pressure and decrease the undesirable effect of compaction pressure.

2. Materials and Methods

2.1. Materials

CELLETS® 500 MCC cores (lot# 21E1034; IPC Process-Center GmbH & Co KG, Grunaer Weg, Germany) were used as the starting cores. The rest of the chemicals used for the experiment, such as diethyl citrate (DEC), glycerol, and methanol were of Pharmacopeia grade and used as received.

2.2. Theoretical Solubility Parameter Computation

The drug–polymer miscibility was assessed theoretically via calculations of Hansen solubility parameters (HSPs) via the group contributions methodology. Thus, the energies of dispersion forces (Ed), polar forces (Ep), and hydrogen bonding (Eh) gave the dispersion (δd), polar (δp), and hydrogen bonding (δh) partial solubility parameters, respectively [26,27].
All calculations were performed using the Hansen Solubility Parameters in Practice (HSPiP) software (5th edition, version 5.1.03). In this study, we calculated HSPs for cellulose and DEC, while HSPs for water and glycerol were taken from the software database. It should be noted that the HSPiP database includes three sets of HSPs for water: one of them is derived from the energy of vaporisation of water at 25 °C and relates to a single molecule, whereas the other two relate to six-molecule associates which are more typical for water in a liquid state [28]. In this regard, the set of HSPs for water as associated units (based on a correlation of total miscibility with certain solvents) were used in this study.
HSPs for cellulose and DEC were calculated using the following HSPiP software DIY methods: the Yamamoto-molecular break (Y-MB), in which the components were input as simplified molecular input line entry syntax (SMILES) codes; the Van Krevelen method where the components were entered by accounting for chemical constituents and taking molar volumes from Y-MB calculations; and the Hoy method with similar input procedure as the latter one. Finally, the average HSP values within all three methods were determined.
The assessment of MCC–plasticizer miscibility was accomplished by comparing HSPs calculated according to three approaches that are based on the principle ‘like dissolves like’ [29].

The approach authored by Van Krevelen and Hoftyzer estimates a high likelihood of successful mixing of two substances if the parameter ΔδT (Equation (1)) is not more than 5 MPa0.5, while complete immiscibility occurs when ΔδT exceeds 10 MPa0.5 [30,31].

ΔδT = ((δd1 − δd2)2 + (δp1 − δp2)2 + (δh1 − δh2)2)0.5

By Bagley’s approach, the drug–polymer miscibility is evaluated using the combined solubility parameter δv (Equation (2)).

δv = (δd2 + δp2)0.5

The probability of miscibility is concluded if the distance between two points in the two-dimensional plot is D12 ≤ 5.0 (Equation (3)) [31].

D12 = ((δv1 − δv2)2 + (δh1 − δh2)2)0.5

The approach by Greenhalgh evaluates the miscibility as the absolute difference Δδt (Equation (4)) between the total solubility parameters δt which are calculated from Equation (5).

Δδt = |δt1 − δt2|
δt = (δd2 + δp2 + δh2)0.5
According to the latter approach, drug–polymer miscibility was assumed to be likely if Δδt ≤ 7, while Δδt ≥ 10 MPa0.5 indicated immiscibility [27].

2.3. Plasticizer Loading onto MCC Cores Using Solvent Evaporation Method

To obtain glycerol- and DEC-loaded MCC spheres, the initial MCC spheres were dried in a vacuum oven, and their water content after drying was confirmed by Karl-Fisher (V10S; Mettler-Toledo GmbH, Greifensee, Switzerland) titration at the level of 0.1 wt.%. Two batches of plasticizer-loaded MCC spheres were made, one with DEC, using methanol as a solvent, and another with glycerol, using water as a solvent (Table 1).
table-1

Table 1. Used amounts of plasticizer and solvent for the plasticizer loading procedure.

About 150 g of MCC was weighed in a 500 mL round-bottom flask. Afterwards, the amount of solvent was calculated using the MCC/solvent ratio obtained from the MCC solvent absorption test. The excess solvent amount (that which could be absorbed and adsorbed by the MCC sphere) was used. The appropriate amount of plasticizer to achieve 5% loading was dissolved in the solvent. The plasticizer solution was added to MCC in a round-bottom flask (total volume of about 250 mL) and shaken vigorously by hand. The solvent was removed by a rotary evaporator (RV3 eco, from IKA-Werke GmbH & Co. KG, Staufen, Germany) at 50 °C under a pressure of 100 mbar. After that, each sample was additionally dried with dry air (50 m3/h) in a fluid-bed drier (Mini-Glatt; Glatt GmbH, Binzen, Germany) at 50 °C until constant outlet air temperature.

2.4. Thermogravimetric Analysis (TGA)

The thermal behaviour of the samples was examined using Thermal Advantage Q50 TGA (TA Instruments, New Castle, DE, USA). The samples (5–10 mg) were heated in an open aluminium pan at a heating rate of 5 °C/min or 50 °C/min from room temperature to 350 °C. Nitrogen was used as a purge gas at a flow rate of 50 mL/min for all TGA experiments. The weight remaining (%) was plotted as a function of temperature (°C). The weight loss (dM) between starting/room temperature (RT) and 200 ℃ (RT-200 °C) and temperature onset of degradation (Td onset) were determined for each formulation. Data was processed with a Universal V4.5A software (TA Instruments, USA) [32].

2.5. Differential Scanning Calorimetry (DSC)

To investigate the thermal properties of the sample before and after processing, a heat-flux DSC (DSC Q20; TA Instruments, USA) was conducted to characterise thermal behaviour. For measurement, the samples were weighed (5–8 mg) into aluminium DSC pans and heated from −10 °C to 390 °C at 50 °C/min with a continuous purge of nitrogen gas at 50 mL/min. Melting temperature onset (Tm onset), melting peak temperature (Tm peak), and melting enthalpy were determined for each formulation. The data were processed with Universal V4.5A software (TA Instruments, USA) [10].

2.6. Powder X-ray Diffraction (pXRD) Analysis

The study was conducted on a diffractometer (RigakuTM Miniflex 600 C; Rigaku Co., Tokyo, Japan) in θ/2θ geometry at ambient temperature using CuKα X-radiation (λ = 1.54182 Å) at 40 kV and 15 mA power. X-ray diffraction patterns were collected over the 2θ range of 3–60° at a 5°/min scan rate. The ground sample was applied to the low-background silicone sample holder.

2.7. Fourier-Transform Infrared (FTIR) Attenuated Total Reflectance (ATR) Spectroscopy

FTIR-ATR study of the samples was performed on a FTIR Spectrometer (Nicolete IS20, Thermo Scientific, Karlsruhe, Germany) using a diamond prism by scanning from 4000 to 400 cm−1, with 2.0 cm−1 resolution and 100 scans per spectrum (the background was taken before each sample). Every graphically represented FTIR-profile was obtained by averaging 3 spectra.

2.8. Scanning Electron Microscopy (SEM) and Particle Size Distribution Analysis

SEM pictures were captured with a microscope (TM3030; Hitachi High-Tech Corp., Tokyo, Japan) in a vacuumed environment at 15 kV to obtain information about morphology on a microscopic level. The particle size distribution (D10%, D50%, and D90%) of the MCC spheres was determined using image analysis coupled with a VIBRI feeder and a RODOS disperser (series QICPIC/L02; Sympatec GmbH, Clausthal-Zellerfeld, Germany).

2.9. Preparation of Tablets

The samples (Table 2) were tableted with 11.28 mm flat punches to obtain a target mass of 500 mg using the compaction simulator STYL’One Nano (Medelpharm, Beynost, France/Korsch, Berlin, Germany). Compression cycles of a small rotary press with a turret diameter of 180 mm, a precompression roll diameter of 44 mm, an angle between rollers of 65 degrees, a compression roll diameter of 160 mm, an angle between main compression and the beginning of the compression ramp of 60 degrees, an angle of the ejection ramp of 20 degrees at a tableting speed of 70 rpm (maximum for STYL’One Nano), a precompression and compression forces of 5 and 30 kN (equivalent of 50 and 300 MPa) were used [9].
table-2

Table 2. Formulations for tableting.

2.10. The Theoretical True Density Calculation

The theoretical true density of tablet composition was calculated based on the pycnometric density (ρt) of MCC (1.586 g/cm3) [16,33], glycerol (1.262 g/cm3) [34], DEC (1.287 g/cm3) [35], and their shares (xw/w) using the additive methodology and the following equation [1]:

𝜌𝑡=(𝜌𝑀𝐶𝐶×𝑥𝑀𝐶𝐶)+(𝜌𝑒𝑥𝑐×𝑥𝑒𝑥𝑐)ρt=ρMCC×xMCC+ρexc×xexc

2.11. In-Die Heckel Plot Construction

The relative density (ln(1/ε)) was calculated automatically with Alix software ver. 20220711 (Medelpharm, Beynost, France) [4]. The relative density and compaction pressure (P, MPa) data were plotted by the Heckel relationship [6]:

𝑙𝑛(1/𝜀)=𝐾×𝑃+𝑙𝑛(1/𝜀0)=𝐾×𝑃+𝐴ln⁡(1/ε)=K×P+ln⁡1/ε0=K×P+A

where: K is the slope of the linear region (the proportionality constant), and ln(1/ε0) is a constant, A, that represents the intercept/ degree of packing (at porosity ε0) achieved at low pressure because of the rearrangement process before an appreciable amount of interparticle bonding takes place. The mean yield pressure (Py, MPa) was calculated in accordance with Hersey and Rees by the equation [3,7,36]:

𝑃𝑦=1𝐾Py=1K
The mean yield pressure was measured (n = 10 for each formulation) in the pressure range between 70 and 210 MPa. A one-way ANOVA (analysis of variance) test was used to compare the means of two groups using the built-in possibilities of the current version of Excel (Microsoft 365; Redmond, Washington, DC, USA; Supplementary Materials).

3. Results and Discussion

MCC is manufactured by hydrolysis with dilute mineral acid solutions of α-cellulose sourced from raw plant material. After hydrolysis, the hydrocellulose is filtered, and the aqueous slurry is spray-dried. Thus, the MCC as an excipient contains up to 7 wt.% of moisture in accordance with pharmacopoeia (JP, PhEur, and USP) [16]. Theoretical solubility parameters were used to obtain three values (ΔδTD12, and Δδt) to assess the possible miscibility of cellulose with water, glycerol, and DEC (Table 3, Figure 2).
fig-2_Plasticity of Microcrystalline Cellulose Spheres

Figure 2. Evaluation of MCC–plasticizer miscibility using averaged solubility parameters: 3D approach authored by Hoftyzer and Van Krevelen (a), 2D Bagley’s plot (b), and 1D bar graph according to Greenhalgh (c).

table-3

Table 3. Hansen solubility parameter calculations.

According to values averaged from the Y-MB, VK, and Hoy methods, the possible miscibility of all three plasticizers (below the proposed threshold; Table 2) was predicted only by Greenhalgh’s approach (based on Δδt calculation) which showed the following miscibility likeliness order: water > glycerol > DEC. At the same time, the other two approaches authored by Van Krevelen and Bagley, respectively, indicated that possible miscibility fell into an ambiguous region between 5 and 10 MPa0.5 for all studied plasticizers; however, the same likeliness order (glycerol > water > DEC) was established for both of them.
Therefore, the batch of dried non-plasticized (Figure 3) and three batches of glycerol-, water-, and DEC-loaded MCC spheres were used. Plasticizer-loaded MCC spheres contained 5.0 wt.% of water, 4.2 wt.% of glycerol, and 5.2 wt.% of DEC (Table 4, Figure 4).
fig-3_Plasticity of Microcrystalline Cellulose Spheres

Figure 3. SEM of MCC spheres (D10% = 563 µm, D50% = 651 µm, and D90% = 696 µm).

fig-4_Plasticity of Microcrystalline Cellulose Spheres

Figure 4. FTIR spectrum of dried and loaded MCC spheres in the range of 4000–500 cm−1.

table-4

Table 4. The summary of thermal properties determined by TGA and DSC.

The dried and plasticizer-loaded MCC-spheres were investigated with FTIR spectroscopy (Figure 4). All obtained FTIR spectra showed the characteristic vibration peaks of cellulose [37,38,39,40,41,42]:
  • The broad peak at 3333 cm−1 which is assigned to O–H stretching vibrations of the intermolecularly bonded hydroxyl group;
  • The peak at 2891 cm−1 that corresponds to C–H stretching vibrations;
  • The peak at 1645 cm−1 which is indicative of the O–H bending of bound water;
  • The multiple absorbance bands (peaks at 1428, 1368, 1334, and 1316 cm−1) assigned to the bending and stretching vibrations of C–H and C–O bonds;
  • The peaks at 1202, 1052, and 1021 cm−1 are assigned to the elongation of C-O bonds;
  • The peaks at 1158 and 897 cm−1 are due to the C–O–C stretching vibrations at the β-glycosidic linkage.
No evident differences were observed in the spectrum of water-plasticized MCC spheres compared to the dried non-plasticized sample. This could be explained by the remaining bound water in all samples even after drying (as evidenced by the persistence of the peak at 1645 cm−1 in all obtained spectra [37,41,42]. Nonetheless, some changes were established for MCC spheres treated with DEC and glycerol. Both these plasticizers led to the manifestation of the peak at ~1104 cm−1, which could be related to the stretching vibrations of the C–O bond in the ester group of DEC and the secondary alcohol group of glycerol [43,44,45]. In addition, the spectrum of DEC-loaded MCC spheres demonstrated the most explicit deviation from that of the dried MCC spheres that manifested as a peak at 1731 cm−1 which was absent in the spectra of all other three samples. This peak could be assigned to the C=O stretching of the ester functional group [43]. Therefore, it can be suggested that treatment of MCC spheres with DEC and glycerol resulted in intermolecular hydrogen bonding between hydroxyl groups of cellulose (hydrogen donor) and mentioned functional groups of these plasticizers (hydrogen acceptors), and thus, at the molecular level, the plasticization could be caused by a weakening of intermolecular hydrogen bonds between adjacent cellulose chains [46]. It is interesting to note that it was the secondary alcohol hydroxy group of glycerol (at 1103 cm−1), and not the primary ones (at ~1030 cm−1) [45], that appeared in the spectrum of the glycerol-loaded MCC. As a rule, glycerol primary hydroxy groups are more reactive, and because of that, they are more likely to be involved in homo-intermolecular hydrogen bonding (i.e., glycerol–glycerol). With loading into MCC spheres, hetero-intermolecular hydrogen bonding occurred, i.e., cellulose–glycerol, which apparently was mostly contributed by the secondary alcohol hydroxy group of glycerol, while the homo-glycerol hydrogen bonding network could be preserved. Analogue findings were demonstrated in the study of the glycerol–choline eutectic mixture, which was found to have homo-molecular glycerol hydrogen bonding network similar to that in pure glycerol, whereas choline bonds were at the interstitial voids of the glycerol network [47].
pXRD is a complementary technique to DSC and was used in assessing the presence of crystalline content in formulations. Thus, the pXRD profiles of dried and plasticizer-loaded MCC spheres were investigated. The diffraction patterns of all samples confirmed the crystalline nature of each sample with the same characteristic peaks (Figure 5). The characteristic MCC peaks were also shown to be similar to that reported in the literature [48]. Unfortunately, the pXRD method was reported to have relatively low sensitivity and a limit of detectability (LoD) of 5% [49,50]. Thus, considering the plasticizer load (approx. 5%), the pXRD profiles obtained can be considered similar (with approximately the same level of crystallinity).
fig-5_Plasticity of Microcrystalline Cellulose Spheres

Figure 5. pXRD diffractograms of dried and loaded MCC spheres.

At a 5 °C/min heating rate, the onset of degradation temperature (Td onset) increased from water to DEC and glycerol (from 297.4 to 303.2 and 309.2 °C, respectively; Table 4, Figure 3). Melting of the MCC (DSC-curves) was observed upon its degradation (TGA-curve; Table 4, Figure 4). The increase in heating rate up to 50 °C/min made it possible to increase the Td onset for water-loaded MCC up to 345.7 °C and compare the melting onset temperatures (Tm onset) for MCC loaded with plasticizers. The part of the DSC curve that described melting demonstrated a two-step shape and was characterized by two Tm onsets. The increase in Tm onset 1 and Tm onset 2 was in the same sequence and increased from water to DEC and glycerol: 291.9, 305.7, 315.8 °C for Tm onset 1 and 325.6, 332.4, 335.6 °C for Tm onset 2, respectively (Table 4, Figure 6).
fig-6_Plasticity of Microcrystalline Cellulose Spheres

Figure 6. Weight loss as a function of temperature for loaded MCC spheres (TGA at 5 °C/min).

In this study, the Tm onset 1 and 2 (for water- and DEC-loaded samples) was associated with the thermal degradation of MCC [51]. That can be observed by comparing the first derivative of weight loss and respective Tm onset on the DSC profile of water-loaded MCC spheres (Figure 7). The increase in apparent melting peak temperature (Tm) and apparent melting enthalpy can be explained with the increase in Td from water to DEC and glycerol. Therefore, the thermal analysis did not provide us with insights regarding the plasticization of MCC with selected plasticizers.
fig-7_Plasticity of Microcrystalline Cellulose Spheres

Figure 7. Heat flow as function of temperature for loaded MCC spheres (DSC at 50 °C/min; left Y-axis); the first derivative of weight loss as a function of temperature for water-loaded MCC spheres (TGA at 50 °C/min; right Y-axis).

Tableting of plasticizer-loaded MCC spheres with a compaction simulator was illustrated with pressure-displacement profiles (Figure 8a; exemplified with glycerol-loaded MCC spheres), which were converted to in-die Heckel plots (Figure 8b).

fig-8_Plasticity of Microcrystalline Cellulose Spheres

Figure 8. In-die Heckel plot (a) and pressure-displacement profile (b) for MCC spheres (CELLETS® 500) loaded with glycerol.

The mean yield pressure (Py) of non-plasticized MCC was found at the level of 136.5 ± 6.9 MPa (Av. ± S.D.). Despite the sequence of Tm onsets, the mean yield pressure of plasticizer-loaded MCC spheres decreased from DEC (124.7 ± 9.2 MPa) to water (106.6 ± 10.0 MPa) and glycerol (99.9 ± 1.9 MPa; Figure 9, Table 5). That coincided with the miscibility likelihood order based on the HSP calculations. Therefore DEC, water, and glycerol were able to decrease the Py of non-plasticized MCC spheres by 4.7, 16.3, and 38.9%, respectively.

fig-9_Plasticity of Microcrystalline Cellulose Spheres

Figure 9. Comparison of non-plasticized (dried) with plasticized MCC spheres (Cellets® 500) in terms of Py (a plasticity parameter).

table-5

Table 5. Py data statistics.

Interestingly, despite FTIR revealing more hydrogen binding sites in the case of treatment with DEC (i.e., both C–O and C=O bonds of the ester functional group), glycerol with only one binding site (C–O bond of the alcohol group) was superior in its plasticizing ability, implying that MCC–glycerol hydrogen bonding was more efficient. This could be explained from the viewpoint of molecular weights of glycerol and DEC (92.09 and 248.23 g/mol, respectively). Considering an equal mass loading of both plasticizers (7.88 g), the loading of glycerol was 2.5 times higher in terms of molarity; therefore, more molecules of plasticizer were involved and, accordingly, more hydrogen bonds with cellulose could be formed in the case of glycerol. This follows the general logic that the smaller the molecule weight, the greater the plasticization effect of the plasticizer upon the polymer matrix [52]; however, the strength of intermolecular interactions should also be considered.
Water, as an MCC plasticizer, showed a relatively high ability to decrease Py (increase plasticity). The results obtained highlight the importance of water content in the raw MCC material. Changing the MCC plasticity by 16.3% (at 5 wt.%) significantly changed the mechanical properties. Thus, the fluctuation of moisture content in the MCC (even in the eligible pharmacopeial range) can be the reason for the variability of mechanical properties in complex tablet formulations [53]. Considering moisture as one of the most important factors in pharmaceutical tablets’ shelf-life, narrow specification of moisture content in MCC during the product development stage can be recommended.

4. Conclusions

This study showed the possibility of increasing the plasticity of MCC by loading it with a deliberately chosen plasticizer. The computational approaches based on solubility parameters were found to be useful in predicting the plasticizing efficacy. Based on FTIR findings, it is suggested that plasticization resulted from intermolecular hydrogen bonding between the plasticizers and cellulose molecules that caused the weakening of hydrogen bonds between adjacent cellulose chains. At the plasticizer load used (approx. 5 wt.%), neither pXRD nor DSC gave any insights on the plasticization of MCC with selected plasticizers. Because of the relatively high plasticization ability of water towards cellulose and thus potential changes in MCC mechanical properties, narrow specification of moisture content in MCC during the product development stage can be recommended.

Additonal information on: Plasticity of Microcrystalline Cellulose Spheres

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/pharmaceutics16070945/s1, Table S1. Raw values of Py; Statistical analysis: One-Way ANOVA (α = 0.05).

Author Contributions

Methodology, formal analysis, investigation, data curation: V.M. and A.P.; visualization, writing—original draft preparation, writing—review and editing: A.P., T.K. and V.M.; conceptualization and supervision: V.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Acknowledgments

We would like to acknowledge the following people and their organisations for support of this project with pharmaceutical excipients. Business development manager Bastian Arlt (Glatt Pharmaceutical Services GmbH & Co. KG, Binzen, Germany) and head of business unit pharma Mandy Rehländer (HARKE Pharma GmbH, Mülheim an der Ruhr, Germany) for providing the CELLETS® 500-grade MCC spheres. We want to thank our colleagues Kirils Kukuls and Zoltán Márk Horváth for the data obtained with the compaction simulator and the improvement of the written English of this work, respectively. The author Tetiana Kolisnyk expresses a deep gratitude to the British Academy and Council for At-Risk Academics (UK) for the general and financial support in the frame of the Researchers-At-Risk program.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Lisence

The article “The Increase in the Plasticity of Microcrystalline Cellulose Spheres’ When Loaded with a Plasticizer” is published under Creative Common CC BY license. Any part of the article may be reused without permission provided that the original article is clearly cited. Reuse of an article does not imply endorsement by the authors or MDPI.

References

  1. Mohylyuk, V.; Bandere, D. High-speed tableting of high drug-loaded tablets prepared from fluid-bed granulated isoniazid. Pharmaceutics 202315, 1236. [Google Scholar] [CrossRef] [PubMed]
  2. Romerova, S.; Dammer, O.; Zamostny, P. Development of an Image-based Method for Tablet Microstructure Description and Its Correlation with API Release Rate. AAPS PharmSciTech 202324, 199. [Google Scholar] [CrossRef] [PubMed]
  3. Armstrong, N.A. Tablet Manufacture. In Encyclopedia of Pharmaceutical Technology; Swabrick, J., Ed.; Informa Healthcare USA, Inc.: New York, NY, USA, 2007; pp. 3653–3672. [Google Scholar]
  4. User Guide and Reference Manual of Software Alix (PR-W3-002); Korsch/MEDELPHARM: Berlin, Germany, 2020.
  5. Tay, J.Y.S.; Kok, B.W.T.; Liew, C.V.; Heng, P.W.S. Effects of Particle Surface Roughness on In-Die Flow and Tableting Behavior of Lactose. J. Pharm. Sci. 2019108, 3011–3019. [Google Scholar] [CrossRef] [PubMed]
  6. Heckel, R.W. Density-pressure relationships in powder compaction. Trans. Metal. Soc. AIME 1961221, 671–675. [Google Scholar]
  7. Hersey, J.A.; Rees, J.E. Deformation of Particles during Briquetting. Nat. Phys. Sci. 1971230, 96. [Google Scholar] [CrossRef]
  8. Vreeman, G.; Sun, C.C. Mean yield pressure from the in-die Heckel analysis is a reliable plasticity parameter. Int. J. Pharm. X 20213, 100094. [Google Scholar] [CrossRef] [PubMed]
  9. Mohylyuk, V.; Paulausks, A.; Radzins, O.; Lauberte, L. The Effect of Microcrystalline Cellulose–CaHPO4 Mixtures in Different Volume Ratios on the Compaction and Structural–Mechanical Properties of Tablets. Pharmaceutics 202416, 362. [Google Scholar] [CrossRef] [PubMed]
  10. Mohylyuk, V. Effect of roll compaction pressure on the properties of high drug-loaded piracetam granules and tablets. Drug Dev. Ind. Pharm. 202248, 425–437. [Google Scholar] [CrossRef] [PubMed]
  11. Park, H.; Kim, J.S.; Hong, S.; Ha, E.S.; Nie, H.; Zhou, Q.T.; Kim, M.S. Tableting process-induced solid-state polymorphic transition. J. Pharm. Investig. 202252, 175–194. [Google Scholar] [CrossRef]
  12. Thio, D.R.; Heng, P.W.S.; Chan, L.W. MUPS Tableting—Comparison between Crospovidone and Microcrystalline Cellulose Core Pellets. Pharmaceutics 202214, 2812. [Google Scholar] [CrossRef] [PubMed]
  13. Dashevsky, A.; Kolter, K.; Bodmeier, R. Compression of pellets coated with various aqueous polymer dispersions. Int. J. Pharm. 2004279, 19–26. [Google Scholar] [CrossRef] [PubMed]
  14. Plumpton, E.J.; Gilbert, P.; Fell, J.T. The survival of microorganisms during tabletting. Int. J. Pharm. 198630, 241–246. [Google Scholar] [CrossRef]
  15. Vorlander, K.; Bahlmann, L.; Kwade, A.; Finke, J.H.; Kampen, I. Effect of Process Parameters, Protectants and Carrier Materials on the Survival of Yeast Cells during Fluidized Bed Granulation for Tableting. Pharmaceutics 202315, 884. [Google Scholar] [CrossRef] [PubMed]
  16. Galichet, L.Y. Cellulose Microcrystalline. In Handbook of Pharmaceutical Excipients; Rowe, R.C., Sheskey, P.J., Owen, S.C., Eds.; Pharmaceutical Press: London, UK; American Pharmacists Association: Grayslake, IL, USA, 2006. [Google Scholar]
  17. de la Luz Reus Medina, M.; Kumar, V. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients. Int. J. Pharm. 2007337, 202–209. [Google Scholar] [CrossRef] [PubMed]
  18. Sun, C.C. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int. J. Pharm. 2008346, 93–101. [Google Scholar] [CrossRef] [PubMed]
  19. Chamarthy, S.P.; Diringer, F.X.; Pinal, R. The Plasticization-Antiplasticization Threshold of Water in Microcrystalline Cellulose: A Perspective Based on Bulk Free Volume. In Water Properties in Food, Health, Pharmaceutical and Biological Systems; Reid, D.S., Sajjaanantakul, T., Eds.; Wiley-Blackwell: Hoboken, NJ, USA; Singapore, 2010; pp. 301–314. [Google Scholar]
  20. Osei-Yeboah, F. Improving Powder Tableting Performance through Materials Engineering. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2015. [Google Scholar]
  21. Siepmann, F.; Siepmann, J.; Walther, M.; MacRae, R.; Bodmeier, R. Aqueous HPMCAS coatings: Effects of formulation and processing parameters on drug release and mass transport mechanisms. Eur. J. Pharm. Biopharm. 200663, 262–269. [Google Scholar] [CrossRef] [PubMed]
  22. Wesseling, M.; Bodmeier, R. Influence of plasticization time, curing conditions, storage time, and core properties on the drug release from Aquacoat-coated pellets. Pharm. Dev. Technol. 20016, 325–331. [Google Scholar] [CrossRef] [PubMed]
  23. Matic, J.; Paudel, A.; Bauer, H.; Garcia, R.A.L.; Biedrzycka, K.; Khinast, J.G. Developing HME-Based Drug Products Using Emerging Science: A Fast-Track Roadmap from Concept to Clinical Batch. AAPS PharmSciTech 202021, 176. [Google Scholar] [CrossRef] [PubMed]
  24. Oladeji, S.; Mohylyuk, V.; Jones, D.S.; Andrews, G.P. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS. Int. J. Pharm. 2022616, 121553. [Google Scholar] [CrossRef]
  25. Klar, F.; Urbanetz, N.A. Solubility parameters of hypromellose acetate succinate and plasticization in dry coating procedures. Drug Dev. Ind. Pharm. 201642, 1621–1635. [Google Scholar] [CrossRef] [PubMed]
  26. Medarevic, D.; Djuriš, J.; Barmpalexis, P.; Kachrimanis, K.; Ibrić, S. Analytical and Computational Methods for the Estimation of Drug-Polymer Solubility and Miscibility in Solid Dispersions Development. Pharmaceutics 201911, 372. [Google Scholar] [CrossRef] [PubMed]
  27. Kitak, T.; Dumičić, A.; Planinšek, O.; Šibanc, R.; Srčič, S. Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate. Molecules 201520, 21549–21568. [Google Scholar] [CrossRef] [PubMed]
  28. Hansen, C.M. Hansen. Solubility Parameters: A User’s Handbook; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
  29. Kolisnyk, T.; Mohylyuk, V.; Andrews, G.P. Drug-Polymer Miscibility and Interaction Study as a Preliminary Step in Amorphous Solid Dispersion Development: Comparison of Theoretical and Experimental Data. Maced. Pharm. Bull. 202369, 59–60. [Google Scholar] [CrossRef]
  30. Van Krevelen, D.W.; Nijenhuis, K.T. Cohesive Properties and Solubility. In Properties of Polymers; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
  31. Jankovic, S.; Tsakiridou, G.; Ditzinger, F.; Koehl, N.J.; Price, D.J.; Ilie, A.R.; Kalantzi, L.; Kimpe, K.; Holm, R.; Nair, A.; et al. Application of the solubility parameter concept to assist with oral delivery of poorly water-soluble drugs—A PEARRL review. J. Pharm. Pharmacol. 201971, 441–463. [Google Scholar] [CrossRef] [PubMed]
  32. Pitzanti, G.; Mohylyuk, V.; Corduas, F.; Byrne, N.M.; Coulter, J.A.; Lamprou, D.A. Urethane dimethacrylate-based photopolymerizable resins for stereolithography 3D printing: A physicochemical characterisation and biocompatibility evaluation. Drug Deliv. Transl. Res. 202314, 177–190. [Google Scholar] [CrossRef] [PubMed]
  33. Elsergany, R.N.; Vreeman, G.; Sun, C.C. An approach for predicting the true density of powders based on in-die compression data. Int. J. Pharm. 2023637, 122875. [Google Scholar] [CrossRef] [PubMed]
  34. Price, J.C. Glycerin. In Handbook of Pharmaceutical Excipients; Rowe, R.C., Sheskey, P.J., Owen, S.C., Eds.; Pharmaceutical Press: London, UK; American Pharmacists Association: Grayslake, IL, USA, 2006. [Google Scholar]
  35. CAS Data Base: DIETHYL CITRATE; ChemicalBook: San Jose, CA, USA, 2023.
  36. Fell, J.T.; Newton, J.M. Effect of particle size and speed of compaction on density changes in tablets of crystalline and spray-dried lactose. J. Pharm. Sci. 197160, 1866–1869. [Google Scholar] [CrossRef] [PubMed]
  37. Panaitescu, D.M.; Vizireanu, S.; Stoian, S.A.; Nicolae, C.A.; Gabor, A.R.; Damian, C.M.; Trusca, R.; Carpen, L.G.; Dinescu, G. Poly(3-hydroxybutyrate) Modified by Plasma and TEMPO-Oxidized Celluloses. Polymers 202012, 1510. [Google Scholar] [CrossRef] [PubMed]
  38. Yu, H.; Qin, Z.; Liang, B.; Liu, N.; Zhou, Z.; Chen, L. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 20131, 3938–3944. [Google Scholar] [CrossRef]
  39. Lu, P.; Hsieh, Y.L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydr. Polym. 201082, 329–336. [Google Scholar] [CrossRef]
  40. Agrebi, F.; Ghorbel, N.; Bresson, S.; Abbas, O.; Kallel, A. Study of nanocomposites based on cellulose nanoparticles and natural rubber latex by ATR/FTIR spectroscopy: The impact of reinforcement. Polym. Compos. 201840, 2076–2087. [Google Scholar] [CrossRef]
  41. Li, M.; He, B.; Chen, Y.; Zhao, L. Physicochemical Properties of Nanocellulose Isolated from Cotton Stalk Waste. ACS Omega 20216, 25162–25169. [Google Scholar] [CrossRef] [PubMed]
  42. Haafiz, M.K.; Xue, J.F.; Xu, M.; Gui, B.S.; Kuang, L.; Ouyang, J.M. Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr. Polym. 2014103, 119–125. [Google Scholar] [CrossRef] [PubMed]
  43. Han, J.; Xue, J.F.; Xu, M.; Gui, B.S.; Kuang, L.; Ouyang, J.M. Coordination dynamics and coordination mechanism of a new type of anticoagulant diethyl citrate with Ca2+ ions. Bioinorg. Chem. Appl. 20132013, 354736. [Google Scholar] [CrossRef] [PubMed]
  44. Perez, C.D.; Flores, S.K.; Marangoni, A.G.; Gerschenson, L.N.; Rojas, A.M. Development of a high methoxyl pectin edible film for retention of l-(+)-ascorbic acid. J. Agric. Food Chem. 200957, 6844–6855. [Google Scholar] [CrossRef] [PubMed]
  45. Armylisas, A.H.N.; Hoong, S.S.; Ismail, T.N.M.T. Characterization of crude glycerol and glycerol pitch from palm-based residual biomass. Biomass Conv. Bioref. 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
  46. Cielecka, I.; Szustak, M.; Kalinowska, H.; Gendaszewska-Darmach, E.; Ryngajłło, M.; Maniukiewicz, W.; Bielecki, S. Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity. Cellulose 201926, 5409–5426. [Google Scholar] [CrossRef]
  47. Turner, A.H.; Holbrey, J.D. Investigation of glycerol hydrogen-bonding networks in choline chloride/glycerol eutectic-forming liquids using neutron diffraction. Phys. Chem. Chem. Phys. 201921, 21782–21789. [Google Scholar] [CrossRef] [PubMed]
  48. Mohylyuk, V.; Pauly, T.; Dobrovolnyi, O.; Scott, N.; Jones, D.S.; Andrews, G.P. Effect of carrier type and Tween® 80 concentration on the release of silymarin from amorphous solid dispersions. J. Drug Deliv. Sci. Technol. 202163, 102416. [Google Scholar] [CrossRef]
  49. Song, M.; Liebenberg, W.; De Villiers, M.M. Comparison of high sensitivity micro differential scanning calorimetry with X-ray powder diffractometry and FTIR spectroscopy for the characterization of pharmaceutically relevant non-crystalline materials. Die Pharm.-Int. J. Pharm. Sci. 200661, 336–340. [Google Scholar]
  50. Dedroog, S.; Pas, T.; Vergauwen, B.; Huygens, C.; Van den Mooter, G. Solid-state analysis of amorphous solid dispersions: Why DSC and XRPD may not be regarded as stand-alone techniques. J. Pharm. Biomed. Anal. 2020178, 112937. [Google Scholar] [CrossRef] [PubMed]
  51. Lu, Y.; Yin, L.; Gray, D.L.; Thomas, L.C.; Schmidt, S.J. Impact of sucrose crystal composition and chemistry on its thermal behavior. J. Food Eng. 2017214, 193–208. [Google Scholar] [CrossRef]
  52. Tong, Q.; Xiao, Q.; Lim, L.T. Effects of glycerol, sorbitol, xylitol and fructose plasticisers on mechanical and moisture barrier properties of pullulan–alginate–carboxymethylcellulose blend films. Int. J. Food Sci. Technol. 201248, 870–878. [Google Scholar] [CrossRef]
  53. Amidon, G.E.; Houghton, M.E. The effect of moisture on the mechanical and powder flow properties of microcrystalline cellulose. Pharm. Res. 199512, 923–929. [Google Scholar] [CrossRef] [PubMed]
Titelbild Brezovar-2023

Abstract

The focus of the current work is to study and demonstrate the impact of the design, the scale, and settings of fluid-bed coating equipment on the differences in pellet coating thickness, which in case of prolonged-release pellets dictates the drug release. In the first set of coating experiments, the pellet cores were coated with the Tartrazine dye with the aim of estimating the coating equipment performance in terms of coating thickness distribution, assessed through color hue. In the second set, drug-layered pellets were film-coated with prolonged-release coating and dissolution profile tests were performed to estimate the thickness and uniformity of the coating thickness among differently sized pellets. In both study parts, film coating was performed at the laboratory and the pilot scale and essentially two types of distribution plate and different height adjustments of the draft tube were compared. The dye coating study proved to be extremely useful, as the results enable process correction and the optimal use of the process equipment in combination with the appropriate process parameters. Preferential film coating of larger drug-containing pellets was confirmed on the laboratory scale, while on the pilot scale, it was possible to achieve preferential coating of smaller pellets using rational alternatives of settings, which is desirable in terms of particle size-independent drug release profile of such prolonged-release dosage forms. […]

Materials

In the first part of the study, neutral MCC pellets (CELLETS 700, IPC Process Center GmbH, Germany) were coated with water solution composed of 8% w/w HPMC 6 mPas (Shin-Etsu Chemical, Japan), 1% w/w Macrogol 6000 (Clariant Produkte GmbH, Glendorf site, Germany), 1% w/w coloring agent Tartrazine (Sigma-Aldrich, USA), and purified water (90%, w/w).

In the second part of coating experiments, API-coated pellets containing Diclofenac sodium were coated with water-based sustained release coating dispersion containing Eudragit RS 30D (9.6% w/w), Eudragit RL 30 D (19.2% w/w) (Evonic Nutrition Care GmbH, Germany), 1.7% w/w triethyl citrate (Vertellus LLC, USA), and 10.4% w/w talc.

Methods

Pellet Film-Coating Experiments with Tartrazin

Coating experiments using Tartrazine dye were performed on two laboratory-sized fluid-bed coaters (GPCG1, Glatt GmbH, Germany and BX FBD10, Brinox d.o.o., Slovenia) and on one pilot-sized (BX FBD30, Brinox d.o.o., Slovenia) fluid-bed coater. In case of both laboratory coaters, the type of distribution plate and the gap between the plate and the draft tube were varied. The pilot-scale setup with three swirl generators and draft tubes was used, while only the size of the gap was varied during coating experiments (Table I). All other process parameters were comparable within each coating process scale. […]

Size distributions of uncoated CELLETS® 700 used in Tartrazine coating experiments and of drug-layered pellets used in PR coating experiments

Size distributions of uncoated CELLETS® 700 used in Tartrazine coating experiments and of drug-layered pellets used in PR coating experiments

Conclusion

Considering the results of the coating process evaluation with the dye-coated pellet approach, based on previous research, it can be said that the obtained positive slopes of size preferential coating in the laboratory-scale CW process chamber are within the expected performance of this type of coater design. The values of the slope of the size preferential coating were always lower in the case of the SW distribution plate in comparison with the CW design of the distribution plate. However, within the laboratory-scale coater designs, different performances of swirl generator equipped flat and funnel-shaped distribution plates were identified, the latter exhibiting the least size dependent preferential coating performance. This was attributed to a less expressed dead zone effect enabling mixing and elimination of any segregation in the pellet bed region of the coater. On the pilot film-coating scale, coater equipped with flat SW distribution plates exhibited negative size preferential coating slope, meaning that smaller pellets obtained more coating than larger ones, which is unprecedented result. Moreover, the extent of the negative size preferential coating slope depended on the dynamics of the pressure drop fluctuations. This finding was effectively translated to the prolonged-release coating application, where the right extent of the negative size preferential coating ensures pellet size-independent drug release profiles, thus improving robustness of such multiple unit prolonged-release formulation. By lowering the air flow rate and using bimodal size distribution, rich in smaller drug-layered pellets, led to rather surprising results, where performance of prolonged drug release-coated pellets did not resemble size preferential coating results from the dye coating study part.

These results confirm the fact that we must have a good knowledge of the coater performance characteristics in combination with the process variables and even formulation properties, if we want to produce coated multiple-unit solid pharmaceutical products of the highest quality.

Disclaimer

Excerpt from: AAPS PharmSciTech, 24, 93 (2023), https://doi.org/10.1208/s12249-023-02540-9. by T. Brezovar, G. Hudovornik, M. Perpar, M. Luštrik, and R. Dreu.
Continuous Manufacturing of Cocrystals Using 3D-Printed Microfluidic Chips Coupled with Spray Coating

Abstract on Continuous Manufacturing

Using cocrystals has emerged as a promising strategy to improve the physicochemical properties of active pharmaceutical ingredients (APIs) by forming a new crystalline phase from two or more components. Particle size and morphology control are key quality attributes for cocrystal medicinal products. The needle-shaped morphology is often considered high-risk and complex in the manufacture of solid dosage forms. Cocrystal particle engineering requires advanced methodologies to ensure high-purity cocrystals with improved solubility and bioavailability and with optimal crystal habit for industrial manufacturing. In this study, 3D-printed microfluidic chips were used to control the cocrystal habit and polymorphism of the sulfadimidine (SDM): 4-aminosalicylic acid (4ASA) cocrystal. The addition of PVP in the aqueous phase during mixing resulted in a high-purity cocrystal (with no traces of the individual components), while it also inhibited the growth of needle-shaped crystals. When mixtures were prepared at the macroscale, PVP was not able to control the crystal habit and impurities of individual mixture components remained, indicating that the microfluidic device allowed for a more homogenous and rapid mixing process controlled by the flow rate and the high surface-to-volume ratios of the microchannels. Continuous manufacturing of SDM:4ASA cocrystals coated on beads was successfully implemented when the microfluidic chip was connected in line to a fluidized bed, allowing cocrystal formulation generation by mixing, coating, and drying in a single step.

Conclusions

SDM:4ASA cocrystal particle engineering has been successfully achieved using 3D-printed microfluidic chips. The addition of PVP in the aqueous phase during mixing has allowed the inhibition of needle-shaped crystals and the generation instead of spherical crystal habits with higher purity compared to conventional mixing. A successful continuous manufacturing method for the fabrication of cocrystal-coated particles has been demonstrated by the combination of microfluidic chips with a fluidized bed, allowing the process intensification of mixing and drying in one step.

Authors:

Aytug Kara, Dinesh Kumar, Anne Marie Healy, Aikaterini Lalatsa, and Dolores R. Serrano.

Read more

Read more on continuous manufacturing of cocrystals by Kara et al. here and find out the functionality of CELLETS® 500 (pellets made of microcrystalline cellulose, size: 500-710 µm).
Modelling the disintegration of pharmaceutical tablets

The publication by G. Kumisbek, D. Vetchý, A. Kadyrbay describes gently the development and implementation of a new generic enteric form of CELLETS® 700 (MCC pellets, 700-1000 µm) loaded with omeprazole in capsules by Viva Pharm LLP, a pharmaceutical company based in Kazakhstan. The company’s solid-dosage-form production facility was utilized for this purpose. Detailed technological parameters for production were established and documented in production protocols for commercial batches. Stability testing confirmed the viability of the developed drug in two types of packaging. An analytical normative document containing comprehensive quality control test methods was created for both experimental purposes and the registration dossier.

Equivalence to the innovative drug, Losec®, was demonstrated through dissolution profile testing and Bioequivalence Study (BES). The aim is to commercialize the new generic drug in the pharmaceutical market of Kazakhstan upon obtaining marketing authorization. This initiative aligns with Kazakhstan’s strategy to localize pharmaceutical production, mirroring similar practices in Europe, to ensure affordable and high-quality medicines for its population. The successful development and localization of this generic omeprazole formulation signify a step towards enhancing access to essential medications within Kazakhstan.

Abstract

Background and Objectives: The enteric form of omeprazole is one of the most commonly prescribed medications. Similarly to Europe, Kazakhstan relies on the localization of pharmaceutical drug production as one of its primary strategies to ensure that its population has access to affordable and good-quality medicines. This study comprehensively describes the technologically available development of bioequivalent delayed-release omeprazole. Materials and Methods: Various regimes and technological parameters were tested on laboratory- and production-scale equipment to establish a technical process where a functional and gastro-protective layer is essential. According to the ICH guidance on stability testing and Kazakhstan local rules, stability studies were conducted under conditions appropriate for climate zone II. The comparison of the rate and extent of absorption with subsequent assessment of the bioequivalence of the generic and reference drugs after a single dose of each drug at a dose of 40 mg was performed. Results: The quantitative and qualitative composition and technology of producing a new generic enteric form of omeprazole in capsules were developed and implemented at the manufacturing site of solid forms. Dissolution profiles in media with pH 1.2 and 6.8 were proven. During the accelerated six-month and long-term twelve-month studies, the developed formulation in both packaging materials at each control point passed the average weight and mass uniformity test, dissolution test, acid-resistance stage test, buffer stage test, impurity assay, and microbiological purity test and met all the specification criteria. A bioequivalence study in 24 healthy volunteers compared against the innovative drug showed the bioequivalency of the new generic system. The obtained values from the test and reference products were 1321 ± 249.0 ng/mL and 1274 ± 233 ng/mL for Cmax, 4521 ± 841 ng·h /mL and 4371 ± 695 ng·h /mL for AUC0-t, and 4636 ± 814 ng·h /mL and 4502 ± 640 ng·h /mL for AUC0-∞. Conclusions: Using affordable technologies, a bioequivalent generic delayed-release formulation of 20 and 40 mg omeprazole has been developed.

Materials

The following materials were used in the study: omeprazole (Hetero Labs, Hyderabad, India) Active Pharmaceutical Ingredient (API), lactose monohydrate Supertab 22AN (Glentnam Life Sciences Ltd., Corsham, UK), sodium lauryl sulfate (RNDr Kulich Pharma s.r.o., Hradec Králové, Czech Republic), disodium hydrogen phosphate dodecahydrate cryst. EMPROVE® (Merck KGaA, Darmstadt, Germany), hydroxypropylmethylcellulose (Tailopur 603), hydroxypropyl cellulose Klucel EF Pharm (Ashland Industries Europe GmbH, Schaffhausen, Switzerland), pellets from microcrystalline cellulose (MCC) Cellets®700 (International Process center GmbH & Co. KG, Dresden, Germany), polyethylene glycol 400 (Applichem GmbH, Darmstadt, Germany), methacrylic acid–ethyl acrylate copolymer Eudragit® L30-D55 (Evonic Nutrition and Care GmbH, Darmstadt, Germany), hard gelatin capsules size 0 (Capsugel, Bornem, Belgium), PlasAcryl® HTP20 (Emerson Resources Ink., Norristown, PA, USA), titanium dioxide (Venator Germany GmbH, Krefeld, Germany), talc (Imerys Talc Italy S.p.A, Porte, Italy). All ingredients were of pharmaceutical production grade as described in the European Pharmacopoeia, and are widely used in preparations for oral use at concentrations not exceeding the recommended limits. Losec®, enteric capsules, 20 mg, AstraZeneca AB, Sweden, was used as the reference drug.

Conclusion

The quantitative and qualitative composition and technology for producing a new generic enteric form of omeprazole in capsules were developed and implemented at the solid-dosage-form production facility of the company Viva Pharm LLP, located in Kazakhstan. The technological parameters of the production process were established and specified in production protocols for commercialized product batches. The developed drug in two types of packaging has passed the stability test. An analytical normative document consisting of full quality control test methods was created for the experimental part and the registration dossier. The equivalence of the generic formulation omeprazole Viva Pharm, enteric capsules, to the innovative drug Losec®, enteric capsules, was proved by the dissolution profile test and BES. The new generic drug is aimed to be commercialized in the pharmaceutical market of the Republic of Kazakhstan after obtaining marketing authorization. Similarly to Europe, Kazakhstan relies on the localization of pharmaceutical drug production as one of its primary strategies to ensure that its population has access to affordable and high-quality medicines.

Source: Medicina 2024, 60(3), 427

Paediatric solid oral dosage forms for combination products: Improving in vitro swallowability of minitablets using binary mixtures with pellets

Abstract on paediatric solid oral dosage forms

There is a growing interest in enhancing the acceptability of paediatric pharmaceutical formulations. Solid oral dosage forms (SODF), especially multiparticulates, are being considered as an alternative to liquid formulations, but they may compromise palatability when large volumes are required for dosing. We hypothesised that a binary mixture of multiparticulates for paediatric use, designed to increase the formulation maximum packing fraction, could reduce the viscosity of the mixture in soft food and facilitate swallowing.

Using the Paediatric Soft Robotic Tongue (PSRT) – an in vitro device inspired by the anatomy and physiology of 2-year-old children – we investigated the oral phase of swallowing for multi-particulate formulations, i.e., pellets (350 and 700 µm particles), minitablets (MTs, 1.8 mm), and their binary mixtures (BM), by evaluating oral swallowing time, the percentage of particles swallowed, and post-swallow residues. We also conducted a systematic analysis of the effect of the administration method, bolus volume, carrier type, particle size, and particle volume fraction on pellets swallowability.

The results demonstrated that the introduction of pellets affected the flowing ability of the carriers, increasing shear viscosity. The size of the pellets did not appear to influence particle swallowability but raising the particle volume fraction (v.f.) above 10% resulted in a decrease in the percentage of particles swallowed. At v.f. 0.4, pellets were easier to swallow (+ 13.1%) than MTs, being the administration method used highly dependent on the characteristics of the multi-particulate formulation under consideration. Finally, mixing MTs with only 24% of pellets improved particle swallowability, achieving swallowing levels similar to those of pellets alone. Thus, combining SODF, i.e., MTs and pellets, improves MT swallowability, and offers new possibilities for adjusting product palatability, being particularly attractive for combination products.

Authors: Alejandro Avila-Sierra, Anais Lavoisier, Carsten Timpe, Peter Kuehl, Leonie Wagner, Carole Tournier, Marco Ramaioli

Read more

Get the full publication on paediatric solid oral dosage forms by Alejandro Avila-Sierra et al. here. Used MCC pellet: Cellets 350 and Cellets 700.